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We study the propagation of waves in a medium in which the wave velocity fluctuates randomly in time.
We prove that at long times, the statistical distribution of the wave energy is log-normal, with the average
energy growing exponentially. For weak disorder, another regime preexists at shorter times, in which
the energy follows a negative exponential distribution, with an average value growing linearly with time.
The theory is in perfect agreement with numerical simulations, and applies to different kinds of waves.
The existence of such universal statistics bridges the fields of wave propagation in time-disordered and
space-disordered media.
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Introduction.—In recent years there has been growing
interest in space-time metamaterials for electromagnetic [1]
or acoustic waves [2]. These are materials whose properties
are modulated in space and time. Homogeneous materials
modulated only in time, referred to as “temporal” or “pure-
time,” offer new approaches for the control of waves, e.g.,
through the design of active metasurfaces. They also
stimulate basic studies in wave physics. For example, it
is known for electromagnetic waves that when the dielectric
function is suddenly changed from one value to another,
a backward propagating (time-reversed) wave appears [3].
This phenomenon has been recently put into a general
framework, and demonstrated experimentally with water
waves [4,5]. A periodic modulation of the dielectric
function has also been investigated [6,7], leading to the
appearance of bands and gaps in the wave propagation
constant k, as well as topological phases [8]. Building on
the analogy between space and time, new approaches have
been proposed for the control of waves [9–11]. There is a
lot to expect in the interaction between waves and more
complex temporal materials, including random time-
varying media, a domain that has remained unexplored
to a large extent.
The purpose of this Letter is the study of wave

propagation in a medium with a dielectric function εðtÞ
fluctuating randomly in time. Our focus is on electromag-
netic waves, but the developed theory and the results
encompass other kind of waves, such as acoustic or water
waves. The question of time evolution of a pulse subjected
to random “kicks” due to sudden changes in εðtÞ, has been
posed and studied in Ref. [12]. It has been shown that, after
a sufficiently long time, the energy UðtÞ of the pulse
increases exponentially. A similar regime has been found in
a recent study, in which water waves propagate in a
disordered time-periodic lattice [13]. This behavior sug-
gests a connection with Anderson localization of waves in a

spatially disordered medium [14]. Here we consider a
general model of a disordered time-varying medium, with
an emphasis on weak disorder (the criterion for weak
disorder will be stated later). In this case, one can develop
a detailed analytical theory. The theory shows that at
times larger than a crossover time τc, hlnUðtÞi becomes
proportional to t, with the brackets denoting the average
value, in agreement with experimental and numerical
observations [12,13]. Interestingly, there is an intermedi-
ate regime τm ≪ t ≪ τc, with τm the microscopic time
[defined as the typical time of the modulation of εðtÞ], in
which the average energy hUðtÞi grows linearly with t.
The full statistical distribution of the energy U can be
determined in both regimes. In the intermediate regime,
the energy follows a negative exponential distribution.
For long times t ≫ τc, the statistics becomes log-normal,
in agreement with known results in one-dimensional
wave transport.
General framework.—We consider the propagation of

electromagnetic waves in a homogeneous, isotropic, and
nonmagnetic medium, described by its time-dependent
dielectric function εðtÞ such that the displacement and
electric fields are related by Dðr; tÞ ¼ ε0εðtÞEðr; tÞ. When
the displacement field has a single component D, and
depends only on one space coordinate x, it satisfies

∂2D
∂x2 ðx; tÞ −

εðtÞ
c2

∂2D
∂t2 ðx; tÞ ¼ 0; ð1Þ

together with appropriate boundary conditions. It will prove
useful to perform the analysis in k space. The space Fourier
transform, defined as Dðk; tÞ ¼ Rþ∞

−∞ Dðx; tÞ expð−ikxÞdx,
satisfies

∂2D
∂t2 ðk; tÞ þ Ω2ðtÞDðk; tÞ ¼ 0; ð2Þ
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where Ω2ðtÞ ¼ c2k2=εðtÞ. Equation (2), supplemented with
two initial conditions for Dðk; tÞ and its time derivative,
constitutes a Cauchy problem. We note that since Dðx; tÞ is
real,Dð−k; tÞ ¼ D�ðk; tÞ, where the superscript � stands for
complex conjugate. Therefore the analysis can be limited to
k ≥ 0. We also point out that this description is not limited to
a fully homogeneous space. Indeed, the only requirement is
homogeneity along the propagation direction x. For exam-
ple, the analysis could apply to a waveguide filled with a
homogeneous medium having εðtÞ depending on time, with
the plane wave replaced by a guided wave with a given
transverse profile.
Over a time interval in which ε is a constant, the general

solution to Eq. (2) is of the form

Dðk; tÞ ¼ Dþðk; tÞ þD−ðk; tÞ; ð3Þ

with Dþðk; tÞ ∼ expð−iΩtÞ and D−ðk; tÞ ∼ expðiΩtÞ, cor-
responding to plane waves propagating in the positive and
negative x direction, respectively. In this study, the observ-
able of interest is the electromagnetic energy UðtÞ ¼
½2ε0εðtÞ�−1

R
D2ðr; tÞd3rþ ð2μ0Þ−1

R
B2ðr; tÞd3r [15]. For

a one-dimensional and linearly polarized field, the energy
can be rewritten as

UðtÞ ¼ 1

2πε0ε

Z þ∞

−∞
½jDþðk; tÞj2 þ jD−ðk; tÞj2�dk: ð4Þ

Note that the electric and magnetic contributions to the
energy contain interference terms that exactly compensate,
resulting in the simple expression above.
Transfer matrix.—In k space, the time evolution of the

field can be described using transfer matrices. To model a
medium with a dielectric function εðtÞ changing randomly
in time, we can take Ω2ðtÞ to be a series of instantaneous
kicks (δ kicks) on top of a background value Ω2

b, as
represented in Fig. 1. In this model the kick strength vj and
times tj are independent random variables.

The transfer matrix Mj of a single block j (see Fig. 1)
connects the field Dj at time tj þ 0 to the field Dj−1 at time
tj−1 þ 0, in such a way that

�
Dþ

j

D−
j

�
¼ Mj

�
Dþ

j−1

D−
j−1

�
: ð5Þ

The analysis is performed at a fixed k, and thematrix elements
depend on k, but we drop the argument k in the notations for
simplicity. An explicit calculation of the transfer matrix,
detailed in the Supplemental Material [16], shows that

Mj ¼
�
aj bj
b�j a�j

�
ð6Þ

with

aj ¼ ð1 − iujÞ expð−iθjÞ; bj ¼ −iuj expðiθjÞ; ð7Þ

and uj ¼ vj=ð2ΩbÞ. The matrix Mj has the following
properties:

jajj2 ≥ 1 ð8Þ

detMj ¼ jajj2 − jbjj2 ¼ 1: ð9Þ

Moreover, due to property (9), it is easy to see that
jDþ

j j2 − jD−
j j2 ¼ jDþ

j−1j2 − jD−
j−1j2, showing that the quan-

tity jDþ
j j2 − jD−

j j2 is conserved. At time t < t1 (before the
first kick), we can assume that the incident wave propagates
in the positive x direction, with Dþ

0 normalized such that
jDþ

0 j2 ¼ 1. As a result, the following relation is satisfied for
all j:

jDþ
j j2 − jD−

j j2 ¼ 1: ð10Þ

It is important to note that the subsequent analytical treatment
is not limited to the specific shape of modulation, like the δ
kicks in Fig. 1, but is applicable to any modulation provided
thatΩðtÞ recovers the samebackgroundvalueΩb between the
random kicks. For example we show in the Supplemental
Material [16] that a model based on rectangular time barriers
leads to a transfer matrix satisfying the same properties.
In fact the transfer matrix (6), with the properties (8)–(9)
for its matrix elements, is the most general 2 × 2 transfer
matrix [17].
Statistical theory.—We now develop a theoretical analy-

sis of the statistical properties of the quantity

Uj ¼ jDþ
j j2 þ jD−

j j2; ð11Þ

which, up to a prefactor that we omit, corresponds to the
energy in the field after j kicks. It will prove useful to
introduce new variables zj ¼ jD−

j j2 and βj ¼ jbjj2. We note

FIG. 1. Random chain of δ kicks, with Ω2ðtÞ ¼ Ω2
b þP

j vjδðt − tjÞ. The kick strengths vj and the times tj are random
variables. After each kick the medium recovers the background
value Ωb. The statistical distribution of vj is independent of j.
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that due to relations (9) and (10), we have Uj¼1þ2zj and
jajj2 þ jbjj2 ¼ 1þ 2βj. From Eqs. (5) and (6), we find that

lnð1þ 2zjÞ ¼ lnð1þ 2zj−1Þ þ lnð1þ 2βjÞ

þ ln

�
1þ 2γj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj−1ð1þ zj−1Þ

p
1þ 2zj−1

cosΘj

�
;

ð12Þ

where Θj is the cumulative phase such that
ajb�jD

þ
j−1D

−�
j−1 ¼ jajjjbjjjDþ

j−1jjD−
j−1j expðiΘjÞ and γj ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βjð1þ βjÞ

p
=ð1þ 2βjÞ. The recursion relation (12) is

our starting point in the analysis of the statistical properties
of the field energy.
We first analyze the behavior of the energy UN after N

kicks, in the limit N → ∞. In this limit, which is the same
as t → ∞, the field amplitude Dðk; tÞ is expected to
increase exponentially with time. A more rigorous state-
ment is that the Lyapunov exponent

λðkÞ ¼ lim
t→∞

ln jDðk; tÞj
t

ð13Þ

takes a finite positive value. The Lyapunov exponent is a
self-averaged quantity, independent of the particular reali-
zation of disorder. It is also related to the larger eigenvalue
νðk; NÞ of the transfer matrix MðNÞ ¼ MN �MN−1…M1

corresponding to a chain of N random kicks. Actually
λðkÞ ¼ limN→∞ ln νðk; NÞ=N [18], which in terms of the
energy UN reads as λðkÞ ¼ limN→∞ ln UN=2N. Thus,
for large j, the variable zj is exponentially large and we
can assume

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj−1ð1þ zj−1Þ

q
=ð1þ 2zj−1Þ ≃ 1; ð14Þ

which allows us to simplify Eq. (12) into

ln Uj ¼ ln Uj−1 þ lnð1þ 2βjÞ þ ln ð1þ γj cosΘjÞ: ð15Þ

We now introduce the important assumption that the
cumulative phase Θj is completely random, with a uniform
distribution over ½0; 2π�. This assumption defines the so-
called “random phase” model. It cannot be generally valid
for modulations like those in Fig. 1, with an arbitrary
degree of disorder. However, in many cases, and for a
sufficiently long chain of kicks, the cumulative phase does
get randomized and its distribution becomes close to
uniform (this can be checked numerically, as discussed
in the last section). From Eq. (15) we can write

lnUN ¼
XN
j¼1

Xj; ð16Þ

and consider that the terms Xj ¼ lnð1þ 2βjÞ þ
ln ð1þ γj cosΘjÞ are independent and identically distrib-
uted random variables [19]. In the large N limit, according
to the central-limit theorem, this implies that lnUN has a
Gaussian distribution. It only remains to calculate the
average and the variance of that distribution. Averaging
Xj over the random phase Θj [20] followed by averaging
over βj yields

hlnUNi ¼ Nhlnð1þ βÞi: ð17Þ

Here h…i denotes the full statistical average, over the
statistical distributions of Θj and β (we have dropped the
subscript j since the statistical distribution of βj are taken
to be independent of j). We have found that in the large N
limit hlnUNi grows linearly with N, with a slope
hlnð1þ βÞi. The linear increase of hlnUNi for large N,
or, equivalently, of hlnUðtÞi at long times, is reminiscent
of known features of Anderson localization in a random
spatially modulated medium. An analogy can be drawn
from two standpoints. The Lyapunov exponent defined in
Eq. (13) also appears in the one-dimensional Anderson
localization problem [18]. In that problem one is interested
in the solution to the stationary Schrödinger equation,
which is different from the (time) Cauchy problem stated in
Eq. (2). It can be useful, however, to consider a Cauchy
problem for Anderson localization, by fixing the wave
function and its spatial derivative at some point in space and
then calculating the Lyapunov exponent, that turns out to
equal the inverse localization length. We stress that in
localization theory, this approach is used as a trick to
calculate the localization length, while in the present work
the Cauchy problem appears naturally due to physical
initial conditions. Another analogy, both physical and
mathematical, exists between the resistance of a one-
dimensional spatially-disordered conductor, and the frac-
tion of backscattered energy zN ¼ jD−

N j2 in our problem.
More precisely, the resistance ρðLÞ of chain with length L
is known to grow exponentially with L, which is another
manifestation of Anderson localization [21]. The back-
scattered wave energy zN grows with N in a similar way.
Calculating the variance of lnUN is also possible but

one ends up with an integral that cannot be evaluated
analytically, unless the disorder is weak. The case of weak
disorder is of special interest because it is relevant to
experiments (indeed, the modulation of ε is expected
to be very small), and it is amenable to complete analytical
treatment.
Weak disorder.—We define the weak-disorder regime by

the condition βj ≪ 1. In this case hlnUNi ¼ Nhβi, which
follows from (17). This relation shows that hβi=2 is the
Lyapunov exponent for weak disorder. To determine the
variance, we note that Xj≃2βjþ2

ffiffiffiffiffi
βj

p
cosΘj−2βjcos2Θj.

To leading order in βj, averaging over the random
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phase leads to hX2
jiΘ ≃ 4βjhcos2ΘjiΘ ¼ 2βj from which

we deduce

Varðln UNÞ ¼ 2Nhβi ¼ 2hln UNi: ð18Þ

We conclude that for large N the wave energy UN has a
log-normal distribution, with mean value and variance
satisfying (18). An identical result is known in Anderson
localization along weakly disordered chains [22], with the
resistance being the analog ofUN . Our result implies a high
degree of universality in one-dimensional wave transport.
Not only a universal log-normal distribution is approached
for large N, but the variance and mean are related by a
factor of two, which is a signature of single parameter
scaling.
The meaning of the large N limit can be clarified. The

above treatment is based on Eq. (15) which, in turn, is
based on the assumption zj ≫ 1. Initially zj is very small
and gradually grows to reach a value zj ∼ 1 after a large
number of kicks on the order of Nc ¼ 1=hβi. Thus, the
condition for the log-normal distribution and relation (18)
is N ≫ Nc.
It is also interesting to characterize the intermediate

regime 1 ≪ N ≪ Nc, in which we can also expect some
universal—albeit different—statistical distribution for
the wave energy UN. Going back to the general
Eq. (12), which has no restriction on the value of zj, we
set there zj; zj−1 ≪ 1 as well as βj ≪ 1. This leads to the
recursion relation

zj ¼ zj−1 þ βj þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
βjzj−1

q
cosΘj ðj ≪ NcÞ: ð19Þ

As before, we assume that the phase Θj is completely
random or, at least, that it gets randomized after some
number of kicks j0 ≪ Nc. Next, we raise Eq. (19) to power
n and average first over Θj, and then over some arbitrary
distribution of βj, keeping only the leading (linear) terms
in βj. This enables us to express the nth moment of zj in the
form (see Supplemental Material [16]) hznj i ¼ ðn!Þhzjin for
j0 ≪ j ≪ Nc, with hzji ¼ jhβi. This implies that after a
sequence of N kicks, zN follows a negative exponential (or
Rayleigh) distribution:

PðzNÞ¼ðNhβiÞ−1exp½−zN=ðNhβiÞ�ð1≪N≪NcÞ: ð20Þ

We conclude that the energy UN ¼ 1þ 2zN in this regime
has negative exponential distribution, and that the average
energy hUNi ¼ 1þ 2Nhβi grows linearly with the number
of kicks.
It is possible to treat both regimes of short and long

chains, or equivalently short and long times, using a
more formal approach based on a variant of a Fokker-
Planck equation, sometimes referred to as Melnikov’s
equation [23]. To proceed, we start with the basic recursion

relation (12) for the variable z and transform it into a
recursion relation for the distribution PjðzÞ for that variable
after j kicks (the derivation, given in Ref. [23], is
summarized in the Supplemental Materiel [16]). In the
weak-disorder regime hβi ≪ 1, this equation is

PjðzÞ ¼ Pj−1ðzÞ þ hβi ∂
∂z

�
ðzþ z2Þ ∂Pj−1

∂z ðzÞ
�
: ð21Þ

Next, we transform the discrete time steps tj into the
continuous time t, by using the average time interval
Δt ¼ htj − tj−1i. This leads to

∂Pt

∂t ðzÞ ¼ α
∂
∂z

�
ðzþ z2Þ ∂Pt

∂z ðzÞ
�
; ð22Þ

with α ¼ hβi=Δt. In principle, Eq. (22) should be solved
with an initial condition Pt¼0ðzÞ. Actually, the precise
shape of the initial distribution is rapidly forgotten and a
universal function of z (with α as a single parameter) is
approached as time elapses. There are two distinct regimes,
which can be separated using the critical time τc ¼ 1=α,
which is the counterpart of Nc in the continuous time
picture. At short times t ≪ τc, z remains small and we can
neglect the z2 term in Eq. (22) to obtain

PtðzÞ ¼ ðαtÞ−1 exp½−z=ðαtÞ� ðt ≪ τcÞ: ð23Þ

We find that z follows a negative exponential distribution,
identical to Eq. (20), but for continuous time. In the
opposite limit t ≫ τc, the z term in Eq. (22) can be
neglected, and a log-normal distribution for z is obtained:

PtðzÞ ¼ ðz
ffiffiffiffiffiffiffiffiffiffi
4παt

p
Þ−1 exp½−ðln z − αtÞ2=ð4αtÞ�ðt ≫ τcÞ:

ð24Þ

This long-time statistics is in agreement with that obtained
previously for a discrete chain of kicks in the limitN ≫ Nc.
Numerical results.—In order to support and illustrate the

theoretical analyses, we have carried out numerical simu-
lations, using the δ-kicks model defined in Fig. 1. The
transfer matrix in this case takes the form (6), with
coefficients given by Eq. (7). In the simulations uj and
θj are taken to be uniformly distributed random variables,
with uj ∈ ½0; 0.05� (corresponding to weak disorder) and
θj ∈ ½0; 2π�. By performing products of transfer matrices,
we simulate a random chain of N kicks, and calculate
numerically the energy UN. Doing this for many realiza-
tions of disorder (i.e., of uj and θj), we can compute the
statistical distributions of UN or lnUN, and compare the
numerical results with the theoretical predictions.
Focusing first on the average energy, we show in Fig. 2 a

plot of hln UNi versus the number of kicksN. ForN ≫ Nc,
with Nc ¼ 1=hβi ≃ 1200 here, we find that hlnUNi grows
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linearly with N, with a slope hβi ≃ 8.3 × 10−4 coinciding
with that predicted theoretically, as indicated by the straight
line. In the region 1 ≪ N ≪ Nc, we observe a regime in
which hUNi ∼ 1þ 2Nhβi, also predicted theoretically. An
enlargement of this intermediate regime is shown in the
inset. Although not shown for brevity, we have checked
numerically that the condition of the random phase model
is satisfied as soon as N ≫ 1, and that the condition (14) is
satisfied for N ≫ Nc.
The numerical simulation also permits a computation

of the full statistical distribution of UN . The distributions
in the intermediate regime 1 ≪ N ≪ Nc and in the large N
limit N ≫ Nc are shown in Figs. 3(a) and 3(b). In the
intermediate regime, we find that the energy UN follows a
negative exponential law, with average value hUNi ¼
1þ 2Nhβi. For N ≫ Nc, we find that the distribution of
UN is log-normal (lnUN is Gaussian), with hlnUNi ¼
Nhβi and VarðlnUNÞ¼2hlnUNi. The calculated statistical

distributions perfectly match the theoretical predictions,
and confirm the universal character and single-parameter
scaling of wave transport in randomly time-varying
homogeneous and isotropic media, in the regime of weak
disorder.
Conclusion.—In summary, we have presented a general

model for wave propagation in a random time-dependent
medium, and demonstrated the existence of universal stat-
istical distributions of the wave energy U. We proved that,
after a sufficiently long time, U approaches a log-normal
distribution with hlnUi ∼ t, in agreement with well-
established results in one-dimensional transport. In the
weak-modulation regime, a full analytic theory was devel-
oped, which reveals two distinct regimes: For time smaller
than some crossover time τc, the energy distribution follows
a negative exponential (Rayleigh) distribution, while for
times t ≫ τc the distribution crosses over to a log-normal
law. The intermediate regime for t ≪ τc might be relevant to
experiments in which the long-time regime could be difficult
to reach. The theory, in perfect agreement with numerical
simulations, lays some foundation in the emerging topic of
waves in disordered temporal media, with expected out-
comes in the control of various kinds of waves.
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