PHYSICAL REVIEW A 89, 013842 (2014)

Polarization and spatial coherence of electromagnetic waves in uncorrelated disordered media
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Spatial field correlation functions represent a key quantity for the description of mesoscopic phenomena in
disordered media and the optical characterization of complex materials. Yet many aspects related to the vector
nature of light waves have not been investigated so far. We study theoretically the polarization and coherence
properties of electromagnetic waves produced by a dipole source in a three-dimensional uncorrelated disordered
medium. The spatial field correlation matrix is calculated analytically using a multiple-scattering theory for
polarized light. This allows us to provide a formal description of the light depolarization process in terms of
“polarization eigenchannels” and to derive analytical formulas for the spatial coherence of multiply scattered

light.
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I. INTRODUCTION

Light transport in disordered media is characterized by a
multiple-scattering process which randomizes the direction,
phase, and polarization of the propagating waves [1,2]. It is
widely accepted that after many scattering events, polarization
effects can be omitted in the description of the average light
intensity. This justifies the predominant use of scalar theories
for multiple light scattering in the literature. However, when
the problem involves either short distances away from a
polarized source or spatial correlation functions of the field
on short scales, the vector nature of electromagnetic waves
should, in principle, not be neglected.

Most previous works on polarized light in disordered
media have investigated the progressive transfer of energy
from the copolarized to the cross-polarized component of the
scattered light with respect to the incident light. This light
depolarization due to multiple scattering has been observed
in coherent backscattering [3,4] and time-resolved reflection
experiments [5-8], where the contribution of short path-
length trajectories on the optical response of the medium
is significant. Along similar lines, much attention has been
given to magneto-optical effects (e.g., Faraday rotation) in
disordered media [9,10], where an external magnetic field
affects reciprocity in light propagation and, thus, interference
phenomena. Different theoretical models for the multiple
scattering of polarized light have been developed over
the years, including a perturbative approach for the field
amplitude and intensity [11-15], a transfer matrix approach
for the light depolarization on scattering sequences [16—19],
and a vector radiative transfer approach for Rayleigh scatterers
[20] or under conditions of predominantly forward scattering
(i.e., for systems containing large particles) [21]. All in all,
the current knowledge about polarized light in disordered
media can be summarized by the existence of a set of “modes”
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inherent to the vector nature of light and of a typical length
scale governing the light depolarization process.

More recent years have witnessed a renewed interest
in polarization-related phenomena in disordered media. For
instance, it was suggested that important information about the
specific morphology of disordered media could be retrieved
by probing their optical response at mesoscopic scales [22]
or from the near-field speckle statistics measured at sub-
wavelength distances from their surface [23,24]. Fluctuations
of the local density of states (or, similarly, the so-called
Cy correlation [25-27]) in disordered optical materials were
shown to be driven to a large extent by near-field interactions
between the source and the scatterers [27-29]. Polarization
effects are fundamental on such scales. Another example
is the Anderson localization of light, which relies on wave
interference between multiply scattered waves [30]. While
theoretical models for multiple light scattering and localization
generally deal with scalar waves [1,2,31-33], it was recently
suggested that light localization in uncorrelated disordered
media disappears when polarization effects are taken into
account [34]. These examples illustrate well the fact that the
vector nature of light enters a wide range of modern problems
in optics of disordered media and many aspects related to it
remain to be explored.

A requisite quantity for the theoretical description of
polarization-related phenomena in disordered media is the
spatial field correlation matrix, or coherence matrix, defined
as [35,36]

Wij(r,r') = (E(nE;T), (D

where i and j are Cartesian coordinate indices, r and r’
indicate two points in space, * stands for complex conjugation,
and (-) denotes an ensemble average. The matrix W;;(r,r’),
which has been at the core of research in beam optics and
atmospheric turbulence for decades [37,38], provides statis-
tical information on the field correlation after average over
disorder realizations." The important notions of polarization

By contrast, in a single disorder realization, the field at a point is
always fully polarized (i.e., it has a well-defined polarization state)
and the fields at two neighboring points are related in a way that is
specific to the realization.
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and spatial coherence relate, respectively, to the correlation
between orthogonal field components at one point (i # j and
r’ = r) and between parallel field components at two different
points (i = j and r #r’). Although these two quantities
are intimately linked, they constitute the most fundamental
characteristics of electromagnetic fields [39].

In this article, we investigate theoretically the polarization
and spatial coherence of multiply scattered light produced by
a dipole source in a three-dimensional uncorrelated disordered
medium. We derive analytical expressions for the spatial
field correlation matrix using a multiple-scattering theory for
polarized waves. The theoretical framework is similar to that
used in Refs. [11-13,15], but our work goes beyond this initial
model, allowing us to derive different results. We calculate
the eigenmodes that govern the diffusion of polarization as
well as the characteristic length scales that describe energy
propagation through these “polarization eigenchannels.” This
gives an important insight into the light depolarization process
away from a dipole source. We also provide analytical
formulas for the spatial light coherence, showing that the
correlation function strongly depends on the orientation of
the field components with respect to the two observation
points (r and r’). Our study therefore unveils fundamental
properties of electromagnetic waves in disordered media,
which are relevant to the understanding of polarization-related
phenomena in complex systems and may have important
outcomes for medical and material science applications, where
optical imaging and spectroscopy techniques could benefit
from polarization-resolved measurements [40—43].

The article is organized as follows. In Sec. II, we present
the theoretical model used to treat the multiple scattering of
polarized light and describe the derivation of the spatial field
correlation matrix. The derivation of the main results on the
diffusion of polarization and on the spatial coherence of light
in disordered media is presented in Sec. III. We conclude in
Sec. IV with some perspectives and ideas for future studies.
The details of our calculations are given in the Appendices.

II. THEORETICAL MODEL

A. Multiple-scattering expansion

We consider a monochromatic electromagnetic wave with
free-space wave vector ko = w/c, with @ being the wave
frequency and ¢ being the speed of light, propagating in a
three-dimensional disordered medium with dielectric function
€(r). The electric field E satisfies the vector propagation
equation

V x V x E(r) — k3e(r)E(r) = i pow j(r), ()
where j(r) is a source distribution in the disordered medium.
We assume that the disordered medium is nonabsorbing and
is described by a scalar dielectric function of the form e(r) =
1 + de(r), where 8e(r), the fluctuating part of the dielectric
function, obeys white-noise Gaussian statistics,?

(Se(r)) =0 and (Se(r)de(r’)) = ud(r —r'), 3)

with u being an amplitude that will be determined below.

2The validity of this model is discussed in Appendix A2.1.4 of
Ref. [1].
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The ith component of the electric field in Eq. (2) is related
to the dyadic Green function G;; as

Ei(F) = i puow f G (e 1) je (), @

where implicit summation of repeated indices is assumed.
For statistically isotropic, translational-invariant media and
assuming that the scatterers are in the far field of each other
(i.e., near-field interactions are neglected), one shows (through
Dyson’s equation) that the average dyadic Green function in
reciprocal space is given by [44]

(Gir(@) = i — G:G1)(G(q)), )

with (G(q)) = [k} — ¢> — (q@)]"" being the scalar average
Green function and ¥ being the self-energy, which contains the
sum of all multiply scattered events. To order (ko)~', where £
is the scattering mean free path, one finds that X(q) >~ —iky/Z,
thereby expressing the attenuation of the field due to scattering,
and u = 67/ kgt [1,2].

The spatial field correlation matrix W;;(r,r’) =
(E,-(r)E]*.(r’)) can be derived from standard diagrammatic
calculations [1,2] and takes the form of a Bethe-Salpeter
equation,

(E:(nE;()) = (E:)(E;X) +k8/<Gim(r —ry)

X (G2, (1 = PD) D (F1, ¥, 12, 75)
X (E,(rp) E}(r3))drdr|drydr), (6)

where Iy (r1,1],12,1%) is the four-point irreducible vertex
and the integral is taken over the volume occupied by the
disordered medium. The first term in Eq. (6) corresponds to
the ballistic (coherent) part of the propagating light, while the
second (integral) term describes the multiple-scattering pro-
cess. For weak disorder (ko¢ > 1) and independent scattering
[Eq. (3)], the so-called ladder approximation leads to

anrs (rl s r,1 , I ,l'/z)

6'7-[ / / /
~ —=38(rp —r)S(ry — r2)d(ry — r3)8u,0ns. (7N
kot
As a source, we consider a point dipole at ry, defined as
Ji(r) = —iwp(r)é(r — ro), ®)

where pi(r) = ﬁ is the dipole moment oriented along
direction k. This normalization was chosen such that the power
radiated by a dipole in free space is | W. Making use of Eq. (4),
we finally arrive at a Bethe-Salpeter equation in terms of the
Green function [45],

(Gir(r — r9)G%)(r' —1p))
= (Gir(r — 1)) (G5 (r' —10))

6 )
4 (Gim(r —r))(G7, (" — 1))
X (Gui(ry —1r0)Gh (r) — 1o))dry. 9)

Equation (9) is represented schematically in Fig. 1. In
the ladder approximation, the polarization and coherence
statistical properties of light are a result of a sum over all
possible scattering trajectories.
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FIG. 1. (Color online) Representation of the field correlation
function for polarized waves in uncorrelated disordered media and
notations used throughout the article. A dipole source is placed at
point ry and the field is observed at points r and r’ (black dots). The
solid gray and dashed blue lines represent the advanced and retarded
averaged Green functions and the hollow dots represent scattering
events. The input and output polarization states (represented by red
arrows) are (k,l) and (i, j), respectively. The spatial field correlation
function is derived within the ladder approximation (the advanced and
retarded Green functions follow the same trajectories) and involves a
sum over all possible scattering trajectories.

B. Resolution of the Bethe-Salpeter equation

A key step for our study on the polarization and coherence of
electromagnetic waves in disordered media is the resolution of
Eq. (9). The two-point correlation matrix depends on the one-
point correlation matrix (Gk(r; — ro)G},(r; —rp)), which
first needs to be calculated. By setting r’ = r in Eq. (9), we
obtain a self-consistent equation for (G (r — rO)G*l(r —Ty))
that can be solved and used afterwards to calculate the
two-point correlation matrix. In reciprocal space, this equation
reads

(%4
Djju(K) = S;ju(K) + A
where  Sij(K) = [(Gi(q+ 5 (G (q—$) gt is the
source term and Djju(K) = [(Gi(a + 5)G%(a — 5)) 5%
is the diffuse term. Here, q and K are the Fourier transform
variables of X =r —r’ and R = (r 4+ r’)/2 — ry, respectively
(see Fig. 1).
The resolution of Eq. (10) requires us to find the nine
eigenvalues A, and eigenvectors |k[), of 67”Sijk1, such that
we can write

Sijmn (K)Dmnkl(K)’ (10)

6
7 S (K) = ZMUUb (11)

Details on the resolution of the eigenvalue problem are given
in Appendix A.

It is important to note that in previous works [11,12], the
authors have used a perturbation theory for nondegenerate
states [46]. In the limit K — 0, however, the eigenvalues have
degeneracy 1, 3, and 5, such that the approach employed is
formally incorrect, as remarked also in Refs. [13,15]. This
affects the analytical expressions obtained for the line shape
of the coherent backscattering cone, which is of main concern
in these papers. The resulting correction may, however, be
quantitatively small—a fair agreement was actually found
with previous experiments [47]—and it is likely that the main
conclusions given on the respective contribution of polarized
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and depolarized light and the effect of Faraday rotation
and natural optical activity on the cone line shape remain
valid. Similar considerations can be made on other previous
results obtained using the same approach, for instance, in the
context of diffusing wave spectroscopy [48]. A reinvestigation
of these phenomena, as partly done in Refs. [13,20], is
clearly not the scope of this paper. More importantly for us,
the imprecise perturbation theory in Refs. [11,12] or, more
generally, the lack of complete expressions for the eigenvalues
and eigenvectors of 67” S; 11 (K) certainly exclude the possibility
to derive analytically the field correlation matrix, which is the
main purpose of the present paper.

We solve the eigenvalue problem exactly to order K2 from
classical linear algebra, assuming that K <« g = |q|. This
means that the distance between the two observation points
should be much smaller than their distance to the source,
which is verified in the cases considered in Sec. III. We find
six eigenvalues, and three of them are doubly degenerate:

M 1—1K2P, am=1- 3K,

Ma=1— LK Ase=4— 2K, (12
_ 1 292 2,2

Mg =15— 2K, do~ 5 — FK,

where A1 and Ao are given to order K 2. These eigenvalues differ
from those given in Refs. [11,12] for the reason explained
above. The corresponding nine eigenvectors, which form an
orthonormal basis, have complicated expressions and are not
given explicitly here. Nevertheless, one can show that in the
limit K — O, they reduce to the following forms:

1
ki) = 7§3k1,

1
—=(8xa01p — Skpb1a),

|kl)23,4 = 7
1
|kl)s = 7§(5ka51a — Sbbip), (13)
1
|kl)6,78 = —=(8kabip + Skb01a),

/2

|kl)o = \/LE(SM(SM + 8klip —
where a, b, and c¢ are different from each other and take on the
values 1, 2, and 3, which indicate the Cartesian coordinates.
These eigenvectors are exactly those obtained by solving the
eigenvalue problem for K = 0 (see, e.g., Sec. 6.6.2 in Ref. [1]).
As discussed further in Sec. IIT A, each of them describes
a certain “polarization eigenchannel” that relates pairs of
input field components (k and /) with pairs of output field
components (i and j).
Using the complete expressions for the eigenvalues and
eigenvectors, the eigenvalue decomposition in Eq. (11) allows
us to rewrite Eq. (10) for each mode as

28kc'81c)a

£ X
= (14)
6mr 1 —A,
and to derive the one-point correlation matrix
9
Dyja(K) =Y " D,lij), (ki . (15)
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This concludes the first step of the derivation. The matrix
D (K), valid up to the order K 2, describes the diffusion
of the polarization (i.e., r' = r). We will come back to this
specific aspect in Sec. IIT A.

The problem for the two-point correlation matrix (G (r —
rO)G*l(r —rp)) can now be tackled. In reciprocal space,
Eq. (9) becomes

0ijn(q,K) = M;j1(q.K) + 6_ﬂMijmn(qu)Dmnkl(K)9 (16)
where 0;u(q.K) = (Gi(a + 3)G3(a — 3)), Miju(q.K) =
(Gir(q + %))(G;,(q— %)), and D;j(K) was calculated
above. By making use of Eq. (5) and assuming K < ¢, we
can write

Qijn(q,K) = |:(5ik — 4G )1 — 441

6 . A
+ 7(6im - qiqm)(ajn - qjqn)Dmnkl(K)

el ele- B

The product of the averaged Green functions on the last line
can be expanded in powers of K, as shown in Appendix A,
Eq. (A3).

Finally, without loss of generality, we take the case of a
dipole source oriented along the direction k = [ = 1 (meaning
that it is the same dipole that supplies G and G%;; see Fig. 1)
and obtain an expression for the two-point field correlation
matrix in reciprocal space, as

K K
Wii(q.K) = <Ei <q + E) E? (q - E) > = Qi;11(q,K).

(18)

The complete expressions for the elements of W;;(q,K) are
given in Appendix B. As such, the matrix contains all statistical
information about the polarization and coherence of light
generated by a dipole source in a disordered medium within
the ladder and diffusion approximations. Due to the lengthy
and complicated expressions, the inverse Fourier transform
of W;;j(q,K) cannot be easily handled analytically. It may,
nevertheless, be used as a starting point in future theoretical
studies. Analytical expressions can actually be obtained in
certain limits. An important example is given in Sec. III B,
where we investigate the spatial coherence of polarized light
at large distances from the source.

III. RESULTS ON POLARIZATION AND COHERENCE

A. Diffusion of polarization

The eigenmode decomposition of D; 1 (K) in Eq. (15) gives
a clear physical understanding and a solid theoretical basis
for the description of the diffusion of polarization (i.e., for
r' =r) away from a polarized source. The eigensubspaces
lij),(kl|, essentially describe the redistribution of the energy
density from a given pair of input polarization components k
and [/ onto pairs of output polarization components i and ;.
In the limit K — 0, i.e., far from the source [see Eq. (13)],
the polarization eigenchannels for p =1, 5, and 9 relate
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parallel components only (e.g., for p =9, (11| in input gives
[11) 4 |22) — |33) in output), while the remaining ones relate
orthogonal components only (e.g., for p =2, (23| in input
gives |23) — |32) in output). In general, the redistribution of
the polarization is much more complex, involving parallel and
orthogonal field components and depending on the orientation
of the source in a nontrivial way. This information is available
in the complete expressions of the eigenvectors derived to
order K? in the previous section.

Concurrently, the eigenvalues D), provide the characteristic
length scales that describe the propagation of the energy
density in the individual polarization eigenchannels. It is
already known that polarization involves the existence of
additional propagating modes [1,11] and it was predicted that
their respective energy density would decay exponentially on
the scale of the collision time 7 = f, leaving only the scalar
mode at long times. Here, we go beyond these results and
provide analytical expressions for the spatial distribution of the
energy density propagating through the individual polarization
eigenchannels.

Writing the eigenvalues inEq. (12) in the form 1, = A,

B,,KZE2 and developlng % (”Ié)) around K = 0, Eq. (14) can
be rewritten as

o [ 1 B, ,,
7 (Ap 1+A2K L )DP(K)_I. (19)
We define a quantity U,(K) = % D,(K) that has the dimen-
sion of an energy density (J m~>). After inverse Fourier trans-
form of Eq. (19), we find that the energy density associated
to each polarization eigenchannel obeys a classical diffusion
equation with an effective attenuation term, —D, V2U (R) +

Ha,pcUp(R) = 8(R), where D), = 2 —+ct and p, , = e(
1) are the diffusion constant and the attenuatlon coefﬁ01ent of

the pth polarization eigenchannel. The solution of the diffusion
equation is

R
U,R) = e — , 20
YR)= 2D R Xp[ zeﬁ;,,} 20)
with R = |R| and fegr ), = ‘/“D”C an effective attenuation
a,p

length.

Table I summarizes the diffusion constants and effective at-
tenuation lengths for the different polarization eigenchannels.
As expected, we recover the expression for the diffusion of

TABLE I. Summary of the diffusion constants D,, and effective
attenuation lengths £, characterizing the diffusion properties of
the energy density through the individual polarization eigenchannels,
given by Eq. (20). The eigenchannel p = 1 corresponds to the scalar
(Goldstone) mode. It is the only remaining mode at large distances
from the source, with the other ones being exponentially attenuated
on a length scale of the order of the mean free path.

p 1 2 34 5.6 7.8 9
D, let Sl B Do B
Lot p 00 \/ge \/gﬁ %E %76 %6
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the classical intensity through the eigenchannel p = 1, which
corresponds to the scalar mode, and which stems from the
requirement that energy should be conserved throughout the
multiple-scattering process [1]. Itis the only remaining mode at
long distances from the source and therefore justifies the use of
scalar theories for the propagation of the average energy den-
sity in disordered media. The diffusion processes through the
other polarization eigenchannels, p = 2, ...,9, exhibit vary-
ing diffusivities and are all attenuated on a length scale of the
order of the mean free path (£, ~ £). This attenuation trans-
lates the progressive depolarization of light away from a polar-
ized source. It is worth emphasizing that these results apply to
uncorrelated disordered media for which the transport mean
free path ¢,, that is, the relevant length scale for diffusive pro-
cesses, is exactly equal to the scattering mean free path £. For
correlated disordered media (or systems composed of finite-
size scatterers), we expect the effective attenuation coefficients
Lefr, p and diffusion constants D), to depend on £;, possibly in a
nontrivial way. We leave this investigation for future research.

In sum, we have calculated the eigenmodes that govern the
diffusion of the polarization and the characteristic length scales
describing the energy propagation through the individual
polarization eigenchannels. This provides an important insight
into the way light is depolarized away from a dipole source
and constitutes the first important result of this article.

B. Coherence of polarized light in disordered media

Another fundamental property of polarized light is spatial
coherence, which, as explained previously, describes the corre-
lation between parallel field components at two different points
of space. Although the complete expressions for the two-point
field correlation functions W;;(q,K) given in Appendix B are
rather complicated, it is still possible to investigate analytically
the spatial light coherence at large distances from the source.

By keeping only the leading term to order K2, one finds a
simple relation for the field correlation in reciprocal space,

6ij — 4i4;)

K202
As shown in Appendix C, this expression correctly leads to the
classical result for the diffusion of the energy density in real
space. It follows from Eq. (21) that, at large distances from
the source, the two-point correlation function is independent
of the orientation of the source dipole. Let us stress that this
is not the case concerning the other terms in the two-point
field correlation matrix that contribute at shorter distances,
indicating that information about the dipole source orientation
is still contained in the two-point field correlation matrix. This
aspect could be investigated in future studies.

The two-point field correlation matrix in real space,
Wi;(R,X) = (Ei(R + $)E5(R — %)), can be obtained by in-
verse Fourier transform of Eq. (21). Details are given in
Appendix D. Without loss of generality, we assume that the two
observation points are oriented along direction 1, X = X,
and find

Wij(q.K) = (G@)(G™(q). 2y

[9X)

SR i=j=1
Wii(R,X) = ﬂ”ﬁiﬁfﬁ)(x) (i=j=23) (22)
0 @ # 1),
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where
FOX) =
2(ko X )* (ko)
x [2 — kotnZ(koXn} — i) exp(—ikoXn})
— kotn?*(koXn, + i) exp(ikoXn,)] (23)
and
FOX) = (explikoXn,] — exp[—ikoXn}]),  (24)

2iko X

where the effective refractive index is n, = 1 4 i /(2k¢f), with
the final expressions (23) and (24) being valid up to the order
(ko)™

A first observation on the field correlation matrix is
that the nondiagonal terms vanish, signifying the absence
of correlation between orthogonal field components in two
points. This is a natural consequence of the light depolarization
investigated in the previous section, where the correlation
between orthogonal field components should disappear at large
distances from the source. A second observation is that the
correlation for parallel field components strongly depends on
their orientation with respect to X (here along direction 1).
The correlation functions, normalized to (|[E(R)[*) = g7z,
are plotted in Fig. 2. The field correlation function of the
components parallel to X is broader at short distances and is
attenuated faster than the correlation for components normal
to X. This fundamental property of electromagnetic fields in
disordered media is the second important result of this paper.

Finally, we calculate the trace of W;;(R,X), which, from
Eq. (22), simplifies to JSC:;(Z;), leading to the same expres-

sion as that known for the correlation function of scalar

X/IA

FIG. 2. (Color online) Normalized two-point field correlation in
an uncorrelated disordered medium. The free-space wave vector is
ko = 27” and the mean free path is £ = 20X (e.g., for A = 532 nm,
£ ~ 10.6 um). The X vector is oriented along the direction 1. The
correlation between the parallel field components oriented along
direction 1 differs from that for parallel components oriented along
directions 2 and 3. The correlation between orthogonal components
is zero. The trace of the correlation matrix yields the well-known
expression for the correlation function of scalar waves, given by
Eq. (29).
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waves [2,49],
2\ X
Tr[W;;(R,X)] = (|[E(R)|")sinc[ko X ] exp 2| (25)

This is expected, as the degree of coherence of the field pro-
duced by statistically stationary, homogeneous, and isotropic
current distributions was shown to be universal [50].

IV. CONCLUSION

To conclude, we have investigated theoretically the polar-
ization and spatial coherence properties of electromagnetic
waves produced by a dipole source in an uncorrelated disor-
dered medium, using a multiple-scattering theory for polarized
light within the ladder and diffusion approximations. Our
calculations have been performed to orders K2 (i.e., at large
distances from the source) and (ko) ™! (i.e., for weak disorder),
and assuming that the distance between the observation points
is much smaller than their distance to the source (X < R).

Our first result is the explicit calculation of the eigenmodes
that govern the diffusion of the polarization and the finding
that the energy density propagation through the individual
polarization eigenchannels can be described by a diffusion
equation with an attenuation term; see Eq. (20) and Table I.
The exponential attenuation, found to be on the scale of a
mean free path, measures the progressive light depolarization
away from the source. This eigenmode decomposition gives
a solid theoretical basis for the description of the transport of
the energy density for polarized light in disordered media. It
could be particularly relevant for the optical characterization of
complex materials, where polarization-resolved measurements
in reflection geometries could bring further information into,
for instance, the presence of large-scale heterogeneities [40].

Our second result is the derivation of analytical formulas
for the spatial coherence of light in multiply scattering media;
see Eq. (22). Interestingly, the correlation function between
field components was found to depend strongly on their
orientation with respect to the two observation points. The
classical expression of the correlation function for scalar
waves is recovered by summing over all directions. We
have therefore evidenced a very fundamental property of
polarized waves in disordered media. This, in turn, strongly
emphasizes the need to take polarization effects into account
when mesoscopic scales are part of the physics. Our results
have no bearing whatsoever on the problem recently raised
on the three-dimensional Anderson localization of light [34],
since one should go beyond the ladder approximation, but
they suggest that many optical phenomena in disordered media
simply cannot be captured by scalar theories.

We believe that the theoretical results obtained here could
be a starting point for further studies on polarization effects
in complex systems and be of interest in optical imaging
and spectroscopy techniques for medical and material science
applications. In that respect, several aspects may deserve
particular attention.

First, we have seen that the theoretical description of the
multiple scattering of polarized light in general terms implies
lengthy and complicated expressions that cannot be easily
handled analytically. An interesting followup of our study
could therefore be to numerically calculate the spatial field
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correlation matrix in real space, as to gain insight into the
polarization and coherence properties of light in disordered
media (e.g., at shorter distances from the source) and validate
the theoretical predictions reported here. This could be
obtained by performing either a numerical inverse Fourier
transform of the spatial field correlation matrix W;;(q,K) given
in Appendix B or numerical calculations of realistic systems
using the coupled dipole method [51].

Second, it is important to note that the derivation here was
made for uncorrelated disordered media. Systems possessing
a structural correlation or composed of large particles are
expected to change the light diffusion characteristics. For
scalar waves, one can introduce a length scale, i.e., the transport
mean free path ¢,, that is generally longer than the scattering
mean free path £ [1,33]. However, it is not obvious how
our results on the diffusion of the polarization (Table I), for
instance, would be modified by the presence of structural
correlations (apart from replacing ¢ by ¢;). This aspect is
intimately related to the recent interest in understanding how
the specific morphology of disordered media affects their
optical properties at mesoscopic scales [22,24].

Finally, as mentioned earlier, the notions of polarization
and coherence have been essentially used in the fields of beam
optics and atmospheric turbulence, that is, for paraxial light
propagation [38]. The well-known degrees of polarization and
of coherence have been introduced as to provide one-quantity
measures of the properties of fluctuating two-dimensional
fields. For three-dimensional fields, since the field correlation
matrix relates only two fields, their definition is more subtle
[40,52-56]. We hope that our work will motivate further
investigations along these lines.
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APPENDIX A: EIGENVALUE DECOMPOSITION
OF S;ju(K)

In this Appendix, we explain in detail the eigenvalue
decomposition of §;;;(K) in Eq. (10) to order K 2 The first part
of the derivation is similar to that presented in Refs. [11,12],
while the second part differs significantly.

We begin with

K R K dq
k) = <G”‘ (q * 3>><G"’ (q B 5)> Qny

(AD)

Separating the polarized and scalar parts of the dyadic Green
function as in Eq. (5) and the integral over q as an integral over

g = |q| and an angular average over § = g, we can write

4 o A
Sijin(K) = m((&'k — 431 — 441
OO K . K\ 5 o
<[ o 3o (a3 )jraan

(A2)
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Here, the K dependence of the polarization term has been
neglected under the assumption that K < q.

The average Green functions can be developed in powers
of K around 0, yielding, up to order K 2

(o (a2 (o-3))

= (G(q»(G*(Q)){l —(q-K)[(G(@) — (G*(@)]
+(G*(@)* -

(G*(q»]}-

+(q - K)*[(G(g))*
KZ
+ THG(Q)) +

(GG ()]

(A3)

The integral over g can then be solved using the residue
theorem

4 /Oo G +K G K 2
2y Jo q > q > q-aq
l 3 K?
=—[1-i(@-Kt—@G-K*?P+—|. (A4
6712[ i(q-K)yY—(q-K) +8k§] (A4)
Having K < ko (i.e., R > A), the last term can be neglected,
yielding
L3
(5
6712(( k

x (1 —ig, KL

Sii(K) = —4iq)8j1 — 4;an

— Gn@n KK ). (AS)

Expanding Eq. (A5) and noting that (§7)q = % ;‘)q =1,
(@)a = 7. (G747 = 15- @74 = 3. and (474
fori # j # k, and angular averages containing o d

g; equal zero, we reach the final expression

£ 3
67 2

@
A2y
e = 103
d powers of

SiinK) = [ 8ixdj1 + 5(3ij5k1 + 881 + 8udji)

- lsika G K202 + iéikK K0+ 33 G K K 0%
5 / 15 / 15"’

105 (8118“ + 811(5][ + Sllajk)K 62

(8,,KkK,+8,kK K; + 6 K; Ky
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We now perform the eigenvalue decomposition

Zx,,m (kl|,,

where A, and |kl), are the pth eigenvalue and eigenvector
of GT”S; i1(K), respectively. The eigenvalues can be found
easily from the characteristic polynomial of the matrix. The
results are given in Eq. (12), with &, 9 = 15[119 — 33K2¢> ¥
V441 + K202(—574 + 361K2¢2)].

The calculation of the eigenvectors is much more involved
due to the complexity of the derived expressions, in particular
for p = 1 and 9. The problem can be tackled by solving the
eigenvalue problem in each eigensubspace independently first,
excluding p =1 and 9,

67
<75ijkl - )»p5ik5j1) |kl), =0,

and imposing that all eigenvectors (including those of the
degenerate eigenvalues) should be orthogonal to each other,

(kl|plkl)y = 8pg. (A9)

z;kl (K) (A7)

(A8)

Then, the problem for the eigenvectors p = 1 and 9 can be sim-
plified by imposing them to be orthogonal to all other eigenvec-
tors and finally by solving the eigenvalue problem on this re-
stricted set of solutions. A complete set of orthonormal eigen-
vectors (not shown here), which verifies Eq. (A7), is obtained.

APPENDIX B: TWO-POINT FIELD CORRELATION
MATRIX IN RECIPROCAL SPACE

In this Appendix, we provide the complete expressions
obtained for the two-point field correlation matrix, W;;(q,K) =

(Ei(q+ %)E]*.(q — %)). We find that it can be written in the
form

¢ @ 7¢(@.K)

K202 ' K435+ 13K202)
70C7(4.K) 35C;7(4.K)

K421 + 13K2¢2) ' K*Q21 + 23K2¢2)

ol i)

Wi;(q,K) = |:

" 105
+8k[K,'Kj +5ij,'K[ +5j[K,'Kk)£2i|. (A6) when i = j, and
|
5C1(@.K) K K
Wi(q.K W (q-2)). B2
H(@.K) = K2£2(35+13K2£2)(21+13K2£2)(21+23K2£2)< <q+2>>< (q 2>> B2)

when i # j. The average Green functions can be developed to order K 2 asin Eq. (A3). In Egs. (B1) and (B2), C,-(;)(K,q) are

prefactor functions given by

OPN
G 7 @ =&

for all i and j, and

C)(@.K) = (4K7 -

—K3[1 - (1+543)47] + Ki{4 —

—4iq;. (B3)

— K3)(10K2K34142G3 + 10K1G1 (=1 + 47) (K292 + K3d3) — K3[1 — (1 +543)41 ]
gi[4+5(1-47)]}). (B4)
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C(@,K) = 2K, [Ki (—1 4 §2) + §1(K2da + K333)|[K141(K2d2 + K3d3) + (K2 + K3)(1 - 4D)],

C(@.K) = K3 + 2K34142(K1 — K147 + K3g1gs) + K3 [1+ 47 — 41 (2 + 43)] + 2K2K34142

(BS)

x [2K74143 + K30145 + K1 K3(1 — 47)] — K341[K741(45 — 43) — 2K 1K3d3(1 — 47) + K341 (1 + 245 + 43)]

+KHK3G3 (a3 — 43) + 2K K3q1dgs (1 — @7) + K3(1 — g))[-1 +3(1 = 4})]},
C(@.K) = (4K7 — K3 — K){(1 — 43)[K3 + 10K, K2g142 — K3 (4 — 543) + K7 (1 — 543)]
— 10K36243[ K 14142 — Ko (1 — @3)] + 5(K} — K3)d343 )
CH(@.K) = 2K [K1G1d2 — K2 (1 — 83) + K30243){ (K3 + K2)d1dz + Ki[Ka(1 — 43) — Kadds ]}

CO@K) = 2K, (K3 + K3)d142[ Ka (1 — 42) — K3dods] + K2[(KZ — K3)(1 = 43)” — 4K2K3d045(1 — 43)
— (K3 = K3)@333] + (K3 + KD{K3[—1 + 2 +G7)a3 — G5] — 2K2K3d045(1 — 43) + K345 (47

CY(@.K) = {~308741G> + 1470 (14K [ K> [1 — 33 + 43 (—1 +243)] + K3(—1 + 247) 923}
—3K74142(9 + 2893 + 2847) — 1 [14K2 K+ (1 — 243)ds + K342(13 + 7043 + 5643)

+ K2G2(27 4 5643 +7043)]) + 13¢°K2(322K 3 {Ka[1 — §2 + (=1 +243)32] + Ks(—1 4 247)4295)

(B6)

(B7)

(B8)

a3)},
(B9)

+70K (K3 + KD {K2[1 — 47 + (=1 +24)a3] + K3 (=1 +247)4243} — 23K{q142(—3 + 2893 + 2843)
— (K3 + K3)41[7T0K2 K3( — 1 +243)ds + K3G(—69 + 25243 + 18243) + K3d»(1 + 18245 + 25243) ]

—2K7G1[91K> K3 (1 — 245)43 + K342(—34 + 28745 + 19643) + K54>(57 + 19645 +28743)])
+7¢ (868K { Ka[1 — 47 + (—1+247)45 | + K3(—1 +247)4243} + 672K (K3 + K3)
x {Ko[1 =47 + (=1 4247)43] + K3(—1+247)42d3} + K}4142(25 — 302443 — 302443)

— (K3 + K3)1[28K2K3(—1 +233)43 + K392(—25 + 148443 + 145643) + K3do(3 + 145643 + 148443)]
—2K741[84K>K3(1 — 243)ds + K3do(—11 + 214243 + 205843) + K332(73 + 205845 +214243)])}, (B10)

C5)(@,K) = —30879293 + 14702 K3G235(43 — 5647 — 7043) + 14K, [K3 — K393 + K141 (—1 +283)ds

+ K3(—14247)43] — 42[14K1 K361 (1 — 243) + 3K743(—19 + 2845 + 2843) + K3G3(—43 + 7045 + 5643)]}

+13€°K2(—23K {423 (—31 + 2842 + 2893) + 322K 41 [K2(—1 +283)ds + K3g2(—1 +243)]
+ 70K (K3 + K3)a1[Ka(—1 +243) g3 + K3da(—
+ K34243(—230 + 19643 + 28743) — 91K, K3[1 — g3 + (=1 +243)43]} — (K3 + K3)

1+262)] — 2K{K3G233(—230 + 28743 + 19643)

x {K34245(—251 + 25245 + 18243) + K342G3(—251 + 18245 +25243) + 70K K3[1 — g5 + (—1 +243)43]})

+ 74 (K13233[299947 — 25(—2 + G5 + G3)] + 868K (1 [ K2(—1 +243)43 + K3do(—1 +243)]

+ 672K (K3 + K3)q1[K2(—1+233)ds + K3g2(—1 4 243)] — (K3 + K3){K3G243(—1481 + 148443

+145643) + K34243(— 1481 + 145645 + 148443) + 28K, K3[1 — 45 + 45 (—1 +243)]}
+ 2K {K3G:43(2069 — 205845 — 214243) + K34245(2069 — 214245 — 205843)

+ 84K, K31 — 43 + 43 (—1+243)]}). (B11)
[
Note that C§7(§.K) and C{; (§.K) can be found from C33'(§.K) APPENDIX C: DIFFUSION OF THE ENERGY DENSITY
and C{3)(§.K), respectively, by the transformations K, <> K3 In this Appendix, we show that the classical expression for

and §» <> g3 (the source being along 1), and that the matrix  the diffusion of the energy density is properly recovered using
Wi;(q,K) is symmetric. The behavior of W;;(q,K) in Eq. (B1)  Egq. (21). Starting from this equation and integrating over q,

at small K is dominated by the first term of the sum, which is
the only one that diverges.
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we have

[lela3)ei(o-2)) e

1
- / (8 — 51 G@) G @)

K22 (2 )3
4 *
=X <(5u qlq/)/ (G(@)(G*(@)q® = )3>
1
= oKl (C1)

where we have used the results shown in Eq. (A4) for
the integral and (8;; — §;G;)q = 2;;. Transforming back the
expression into real space, we reach

1 ER)|?
(ERER) = 5y = s,

(C2)

where (|E(R)|?) = &T% 7% 1s the averaged intensity throughout
the medium. We finally recover the classical expression for the
energy density in a disordered medium, that is, the solution of

the diffusion equation

6 1
UR) = %Tr[(E,-(R)E}(R))] = ——,

C3
47 DR ©3)

where D = % is the diffusion constant.

APPENDIX D: DETAILS OF CALCULATIONS FOR THE
TWO-POINT FIELD CORRELATION MATRIX

In this Appendix, we detail the inverse Fourier transform of
the two-point field correlation matrix W; ;(q,K) in Eq. (21).
The inverse Fourier transform in K is straightforward and gives
Fx 1(ﬁ) 47”32 % - For the inverse Fourier transform in g, itis
convenient to consider the two polarization-dependent terms,
8ij and —§;q;, separately. The inverse Fourier transform can
be simplified in spherical coordinates, with § = cos(f)ii; +
sin(@) cos(¢)it, + sin(0) sin(¢)ii3, setting X = Xii; without
loss of generality, and considering that the averaged Green
function does not depend on direction, (G(q)) = (G(q)). We
find

/ 5,/(G(Q) (G*(@)) expl—iq - X] L

22X

(2 )3

fo qsin(q X)(G(9))(G"(9))dgq, (D1)
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for the first term, and

dq
(2m)3

/q%c?j(G(q))(G*(q)) exp[—iq - X]
1
~ 22x?
for the second term, with
2X cos(gX) + (¢ X* — 5) sin(gX) (i=j=1)
—X cos(gX) + gsin(qX) (i=j=203)
0 G #J).

/Oci,<G<q>><G*<q>>dq, (D2)

Cij =

(D3)

The correlation function of the different elements of
W;;(R,X) can now be calculated analytically. Separating the
different terms that are summed in these integrals, and defining

ne = /1 +1i/(kol), we get

1
2n2X

fo q sin(g X){(G(g))(G™(q))dq

—I
TES'e

/ q expligX1(G(9))(G*(9))dq

(explikoXn,] — exp[—ikoXn}]), (D4)

Sko

1 o0
m/o cos(g X)(G(9))(G*(9))dq

1 o0
=15 [ explig X1(G(@)(G* (@))dg

_ £ exp(—ikoXn}) n exp(ikoXn,)
 8mkoX? kon kon, ’

(D5)

and

1 i X
/0 Sm(;’ ) (GG (@)dg

2m2X3
—i * exp(qu) *
= G(¢))(G*(¢q))d
e [ Ty (@G @ndg
e [2 + ikotn] exp(—ikoXn})
= 1 n, exXp(—1 n
Sk2(1 4 k) x3 O e ST
— ikotn? exp(ikoXn,)]. (D6)

These integrals were solved by the residue theorem on the
upper half space and the latter exhibits a pole at g = O that
needs to be properly taken into account. The insertion of
Egs. (D4)—~(D6) into Eq. (D3) leads to the final expression
for the two-point correlation function in Eq. (22).

[1] E. Akkermans and G. Montambaux, Mesoscopic Physics of
Electrons and Photons, 1st ed. (Cambridge University Press,
Cambridge, UK, 2007).

[2] P. Sheng, Introduction to Wave Scattering, Localization
and Mesoscopic Phenomena, 2nd ed. (Springer, Berlin,
2010).

[3] M. P. van Albada and A. Lagendijk, Phys. Rev. B 36, 2353
(1987).

[4] M. Rosenbluh, I. Edrei, M. Kaveh, and 1. Freund, Phys. Rev. A
35, 4458 (1987).

[5] R. Vreeker, M. van Albada, R. Sprik, and A. Lagendijk, Opt.
Commun. 70, 365 (1989).

013842-9


http://dx.doi.org/10.1103/PhysRevB.36.2353
http://dx.doi.org/10.1103/PhysRevB.36.2353
http://dx.doi.org/10.1103/PhysRevB.36.2353
http://dx.doi.org/10.1103/PhysRevB.36.2353
http://dx.doi.org/10.1103/PhysRevA.35.4458
http://dx.doi.org/10.1103/PhysRevA.35.4458
http://dx.doi.org/10.1103/PhysRevA.35.4458
http://dx.doi.org/10.1103/PhysRevA.35.4458
http://dx.doi.org/10.1016/0030-4018(89)90132-6
http://dx.doi.org/10.1016/0030-4018(89)90132-6
http://dx.doi.org/10.1016/0030-4018(89)90132-6
http://dx.doi.org/10.1016/0030-4018(89)90132-6

KEVIN VYNCK, ROMAIN PIERRAT, AND REMI CARMINATI

[6] F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys.
Rev. B 40, 9342 (1989).
[7]1 A. Dogariu, C. Kutsche, P. Likamwa, G. Boreman, and
B. Moudgil, Opt. Lett. 22, 585 (1997).
[8] L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and
F. Scheffold, J. Opt. Soc. Am. A 21, 1799 (2004).
[9] E. A. Erbacher, R. Lenke, and G. Maret, Europhys. Lett. 21, 551
(1993).
[10] G. L. J. A. Rikken and B. A. van Tiggelen, Nature (London)
381, 54 (1996).
[11] M. J. Stephen and G. Cwilich, Phys. Rev. B 34, 7564 (1986).
[12] F. C. MacKintosh and S. John, Phys. Rev. B 37, 1884 (1988).
[13] V. D. Ozrin, Waves Random Media 2, 141 (1992).
[14] B. A. van Tiggelen, R. Maynard, and T. M. Nieuwenhuizen,
Phys. Rev. E 53, 2881 (1996).
[15] C. A.Miiller and C. Miniatura, J. Phys. A: Math. Gen. 35, 10163
(2002).
[16] E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev. Lett. 56,
1471 (1986).
[17] E. Akkermans, P. Wolf, R. Maynard, and G. Maret, J. Phys. 49,
77 (1988).
[18] A. S. Martinez and R. Maynard, Phys. Rev. B 50, 3714 (1994).
[19] M. Xu and R. R. Alfano, Phys. Rev. Lett. 95, 213901 (2005).
[20] E. Amic, J. M. Luck, and T. M. Nieuwenhuizen, J. Phys. I
(France) 7, 445 (1997).
[21] E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogozkin, J. Exp.
Theor. Phys. 104, 319 (2007).
[22] D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. E 81, 016609
(2010).
[23] A. Apostol and A. Dogariu, Phys. Rev. Lett. 91, 093901 (2003).
[24] R. Carminati, Phys. Rev. A 81, 053804 (2010).
[25] B. Shapiro, Phys. Rev. Lett. 83, 4733 (1999).
[26] B. A. van Tiggelen and S. E. Skipetrov, Phys. Rev. E 73, 045601
(2006).
[27] A. Cazé, R. Pierrat, and R. Carminati, Phys. Rev. A 82, 043823
(2010).
[28] M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk,
Phys. Rev. Lett. 105, 013904 (2010).
[29] R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati,
and N. FE. van Hulst, Phys. Rev. Lett. 106, 163902 (2011).
[30] A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Phys. Today
62, 24 (2009).
[31] J. Kroha, C. M. Soukoulis, and P. Wolfle, Phys. Rev. B 47, 11093
(1993).

PHYSICAL REVIEW A 89, 013842 (2014)

[32] A. Lagendijk and B. A. van Tiggelen, Phys. Rep. 270, 143
(1996).

[33] M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod.
Phys. 71, 313 (1999).

[34] S. E. Skipetrov and I. M. Sokolov, Phys. Rev. Lett. 112, 023905
(2014).

[35] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, UK, 1995).

[36] C. Brosseau, Fundamentals of Polarized Light: A Statistical
Optics Approach (Wiley-Interscience, New York, 1998).

[37] S. C. H. Wang and M. A. Plonus, J. Opt. Soc. Am. 69, 1297
(1979).

[38] L. C. Andrews and R. L. Phillips, Laser Beam Propagation
through Random Media (SPIE, Bellingham, WA, 2005).

[39] A. Dogariu and R. Carminati (unpublished).

[40] V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polariza-
tion in Biomedical Applications (Springer, Berlin, 2006).

[41] O. Emile, F. Bretenaker, and A. Le Floch, Opt. Lett. 21, 1706
(1996).

[42] S. L. Jacques, J. R. Roman, and K. Lee, Lasers Surg. Med. 26,
119 (2000).

[43] E. E. Gorodnichev, S. V. Ivliev, A. 1. Kuzovlev, and D. B.
Rogozkin, Laser Phys. 22, 566 (2012).

[44] C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory
(IEEE, New York, 1994).

[45] V. 1. Tatarski, Wave Propagation in a Turbulent Medium
(McGraw-Hill, New York, 1961).

[46] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics
(Volume 2) (Wiley-VCH, Weinheim, Germany, 1991).

[47] S. Etemad, R. Thompson, and M. J. Andrejco, Phys. Rev. Lett.
57, 575 (1986).

[48] E. C. MacKintosh and S. John, Phys. Rev. B 40, 2383 (1989).

[49] B. Shapiro, Phys. Rev. Lett. 57, 2168 (1986).

[50] T. Setala, K. Blomstedt, M. Kaivola, and A. T. Friberg, Phys.
Rev. E 67, 026613 (2003).

[51] M. Lax, Phys. Rev. 85, 621 (1952).

[52] T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys.
Rev. E 66, 016615 (2002).

[53] J. Tervo, T. Setala, and A. T. Friberg, Opt. Express 11, 1137
(2003).

[54] J. Ellis and A. Dogariu, Phys. Rev. Lett. 95, 203905 (2005).

[55] P. Réfrégier, Opt. Lett. 37, 428 (2012).

[56] J. M. Aufién and M. Nieto-Vesperinas, Opt. Lett. 38, 58
(2013).

013842-10


http://dx.doi.org/10.1103/PhysRevB.40.9342
http://dx.doi.org/10.1103/PhysRevB.40.9342
http://dx.doi.org/10.1103/PhysRevB.40.9342
http://dx.doi.org/10.1103/PhysRevB.40.9342
http://dx.doi.org/10.1364/OL.22.000585
http://dx.doi.org/10.1364/OL.22.000585
http://dx.doi.org/10.1364/OL.22.000585
http://dx.doi.org/10.1364/OL.22.000585
http://dx.doi.org/10.1364/JOSAA.21.001799
http://dx.doi.org/10.1364/JOSAA.21.001799
http://dx.doi.org/10.1364/JOSAA.21.001799
http://dx.doi.org/10.1364/JOSAA.21.001799
http://dx.doi.org/10.1209/0295-5075/21/5/008
http://dx.doi.org/10.1209/0295-5075/21/5/008
http://dx.doi.org/10.1209/0295-5075/21/5/008
http://dx.doi.org/10.1209/0295-5075/21/5/008
http://dx.doi.org/10.1038/381054a0
http://dx.doi.org/10.1038/381054a0
http://dx.doi.org/10.1038/381054a0
http://dx.doi.org/10.1038/381054a0
http://dx.doi.org/10.1103/PhysRevB.34.7564
http://dx.doi.org/10.1103/PhysRevB.34.7564
http://dx.doi.org/10.1103/PhysRevB.34.7564
http://dx.doi.org/10.1103/PhysRevB.34.7564
http://dx.doi.org/10.1103/PhysRevB.37.1884
http://dx.doi.org/10.1103/PhysRevB.37.1884
http://dx.doi.org/10.1103/PhysRevB.37.1884
http://dx.doi.org/10.1103/PhysRevB.37.1884
http://dx.doi.org/10.1088/0959-7174/2/2/005
http://dx.doi.org/10.1088/0959-7174/2/2/005
http://dx.doi.org/10.1088/0959-7174/2/2/005
http://dx.doi.org/10.1088/0959-7174/2/2/005
http://dx.doi.org/10.1103/PhysRevE.53.2881
http://dx.doi.org/10.1103/PhysRevE.53.2881
http://dx.doi.org/10.1103/PhysRevE.53.2881
http://dx.doi.org/10.1103/PhysRevE.53.2881
http://dx.doi.org/10.1088/0305-4470/35/47/314
http://dx.doi.org/10.1088/0305-4470/35/47/314
http://dx.doi.org/10.1088/0305-4470/35/47/314
http://dx.doi.org/10.1088/0305-4470/35/47/314
http://dx.doi.org/10.1103/PhysRevLett.56.1471
http://dx.doi.org/10.1103/PhysRevLett.56.1471
http://dx.doi.org/10.1103/PhysRevLett.56.1471
http://dx.doi.org/10.1103/PhysRevLett.56.1471
http://dx.doi.org/10.1051/jphys:0198800490107700
http://dx.doi.org/10.1051/jphys:0198800490107700
http://dx.doi.org/10.1051/jphys:0198800490107700
http://dx.doi.org/10.1051/jphys:0198800490107700
http://dx.doi.org/10.1103/PhysRevB.50.3714
http://dx.doi.org/10.1103/PhysRevB.50.3714
http://dx.doi.org/10.1103/PhysRevB.50.3714
http://dx.doi.org/10.1103/PhysRevB.50.3714
http://dx.doi.org/10.1103/PhysRevLett.95.213901
http://dx.doi.org/10.1103/PhysRevLett.95.213901
http://dx.doi.org/10.1103/PhysRevLett.95.213901
http://dx.doi.org/10.1103/PhysRevLett.95.213901
http://dx.doi.org/10.1051/jp1:1997170
http://dx.doi.org/10.1051/jp1:1997170
http://dx.doi.org/10.1051/jp1:1997170
http://dx.doi.org/10.1051/jp1:1997170
http://dx.doi.org/10.1134/S1063776107020161
http://dx.doi.org/10.1134/S1063776107020161
http://dx.doi.org/10.1134/S1063776107020161
http://dx.doi.org/10.1134/S1063776107020161
http://dx.doi.org/10.1103/PhysRevE.81.016609
http://dx.doi.org/10.1103/PhysRevE.81.016609
http://dx.doi.org/10.1103/PhysRevE.81.016609
http://dx.doi.org/10.1103/PhysRevE.81.016609
http://dx.doi.org/10.1103/PhysRevLett.91.093901
http://dx.doi.org/10.1103/PhysRevLett.91.093901
http://dx.doi.org/10.1103/PhysRevLett.91.093901
http://dx.doi.org/10.1103/PhysRevLett.91.093901
http://dx.doi.org/10.1103/PhysRevA.81.053804
http://dx.doi.org/10.1103/PhysRevA.81.053804
http://dx.doi.org/10.1103/PhysRevA.81.053804
http://dx.doi.org/10.1103/PhysRevA.81.053804
http://dx.doi.org/10.1103/PhysRevLett.83.4733
http://dx.doi.org/10.1103/PhysRevLett.83.4733
http://dx.doi.org/10.1103/PhysRevLett.83.4733
http://dx.doi.org/10.1103/PhysRevLett.83.4733
http://dx.doi.org/10.1103/PhysRevE.73.045601
http://dx.doi.org/10.1103/PhysRevE.73.045601
http://dx.doi.org/10.1103/PhysRevE.73.045601
http://dx.doi.org/10.1103/PhysRevE.73.045601
http://dx.doi.org/10.1103/PhysRevA.82.043823
http://dx.doi.org/10.1103/PhysRevA.82.043823
http://dx.doi.org/10.1103/PhysRevA.82.043823
http://dx.doi.org/10.1103/PhysRevA.82.043823
http://dx.doi.org/10.1103/PhysRevLett.105.013904
http://dx.doi.org/10.1103/PhysRevLett.105.013904
http://dx.doi.org/10.1103/PhysRevLett.105.013904
http://dx.doi.org/10.1103/PhysRevLett.105.013904
http://dx.doi.org/10.1103/PhysRevLett.106.163902
http://dx.doi.org/10.1103/PhysRevLett.106.163902
http://dx.doi.org/10.1103/PhysRevLett.106.163902
http://dx.doi.org/10.1103/PhysRevLett.106.163902
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1103/PhysRevB.47.11093
http://dx.doi.org/10.1103/PhysRevB.47.11093
http://dx.doi.org/10.1103/PhysRevB.47.11093
http://dx.doi.org/10.1103/PhysRevB.47.11093
http://dx.doi.org/10.1016/0370-1573(95)00065-8
http://dx.doi.org/10.1016/0370-1573(95)00065-8
http://dx.doi.org/10.1016/0370-1573(95)00065-8
http://dx.doi.org/10.1016/0370-1573(95)00065-8
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1103/PhysRevLett.112.023905
http://dx.doi.org/10.1103/PhysRevLett.112.023905
http://dx.doi.org/10.1103/PhysRevLett.112.023905
http://dx.doi.org/10.1103/PhysRevLett.112.023905
http://dx.doi.org/10.1364/JOSA.69.001297
http://dx.doi.org/10.1364/JOSA.69.001297
http://dx.doi.org/10.1364/JOSA.69.001297
http://dx.doi.org/10.1364/JOSA.69.001297
http://dx.doi.org/10.1364/OL.21.001706
http://dx.doi.org/10.1364/OL.21.001706
http://dx.doi.org/10.1364/OL.21.001706
http://dx.doi.org/10.1364/OL.21.001706
http://dx.doi.org/10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
http://dx.doi.org/10.1134/S1054660X1203005X
http://dx.doi.org/10.1134/S1054660X1203005X
http://dx.doi.org/10.1134/S1054660X1203005X
http://dx.doi.org/10.1134/S1054660X1203005X
http://dx.doi.org/10.1103/PhysRevLett.57.575
http://dx.doi.org/10.1103/PhysRevLett.57.575
http://dx.doi.org/10.1103/PhysRevLett.57.575
http://dx.doi.org/10.1103/PhysRevLett.57.575
http://dx.doi.org/10.1103/PhysRevB.40.2383
http://dx.doi.org/10.1103/PhysRevB.40.2383
http://dx.doi.org/10.1103/PhysRevB.40.2383
http://dx.doi.org/10.1103/PhysRevB.40.2383
http://dx.doi.org/10.1103/PhysRevLett.57.2168
http://dx.doi.org/10.1103/PhysRevLett.57.2168
http://dx.doi.org/10.1103/PhysRevLett.57.2168
http://dx.doi.org/10.1103/PhysRevLett.57.2168
http://dx.doi.org/10.1103/PhysRevE.67.026613
http://dx.doi.org/10.1103/PhysRevE.67.026613
http://dx.doi.org/10.1103/PhysRevE.67.026613
http://dx.doi.org/10.1103/PhysRevE.67.026613
http://dx.doi.org/10.1103/PhysRev.85.621
http://dx.doi.org/10.1103/PhysRev.85.621
http://dx.doi.org/10.1103/PhysRev.85.621
http://dx.doi.org/10.1103/PhysRev.85.621
http://dx.doi.org/10.1103/PhysRevE.66.016615
http://dx.doi.org/10.1103/PhysRevE.66.016615
http://dx.doi.org/10.1103/PhysRevE.66.016615
http://dx.doi.org/10.1103/PhysRevE.66.016615
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1103/PhysRevLett.95.203905
http://dx.doi.org/10.1103/PhysRevLett.95.203905
http://dx.doi.org/10.1103/PhysRevLett.95.203905
http://dx.doi.org/10.1103/PhysRevLett.95.203905
http://dx.doi.org/10.1364/OL.37.000428
http://dx.doi.org/10.1364/OL.37.000428
http://dx.doi.org/10.1364/OL.37.000428
http://dx.doi.org/10.1364/OL.37.000428
http://dx.doi.org/10.1364/OL.38.000058
http://dx.doi.org/10.1364/OL.38.000058
http://dx.doi.org/10.1364/OL.38.000058
http://dx.doi.org/10.1364/OL.38.000058



