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Abstract This paper extends the Method of Partic-

ular Solutions (MPS) to the computation of eigenfre-

quencies and eigenmodes of plates. Specific approxima-

tion schemes are developed, with plane waves (MPS-

PW) or Fourier-Bessel functions (MPS-FB). This frame-

work also requires a suitable formulation of the bound-

ary conditions. Numerical tests, on two plates with var-

ious boundary conditions, demonstrate that the pro-

posed approach provides competitive results with stan-

dard numerical schemes such as the Finite Element

Method, at reduced complexity, and with large flexi-

bility in the implementation choices.

Keywords element-free methods · biharmonic

equation · numerical methods · algorithms · eigenvalues

1 Introduction

Numerical computation of eigenfrequencies and eigen-

modes of plates is an important problem in mechanics.

An eigenmode is a non-zero solution to

D∆2u+ T∆w − ρhω2u = 0 (1)
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with boundary conditions, where D is the rigidity of the

plate, ρ the specific mass of its material, h its thickness,

and T the normal tension applied at its edges, assumed

to be uniform. The eigenfrequencies are the frequencies

ω such that a non-zero solution exists. Apart from par-

ticular cases where these quantities can be analytically

computed (e.g., circular plates with simple boundary

conditions), they must be obtained by numerical meth-

ods.

The finite element method (FEM), which uses piece-

wise polynomials to approximate the solutions, can be

used to compute these eigenmodes and eigenfrequen-

cies. However, it can be computationally intensive at

high frequencies, as the size of the numerical problem

scales as the square of the spatial frequency. Alterna-

tive methods are the boundary element method (BEM)
[1], the method of fundamental solution (MFS) [2], or

its variant proposed by Kang et al. [3], the Non Di-

mensional Influence Function (NDIF). Here, only the

solutions to the equation with a given wave number

are approximated as linear combinations of a family of

functions. Eigenmodes are found as such combinations

which also satisfy the boundary conditions.

Here, we investigate a new computational method

derived from the Method of Particular Solutions, pro-

posed by Fox, Henrici and Moller (FHM) [4], and im-

proved by Betcke and Trefethen [5], for the computation

of eigenmodes of the Laplace operator. While the fun-

damental ideas used in this method are similar to the

previously cited methods, it has several advantages:

– the stability of the numerical problems is improved,

– multiple eigenvalues are easier to determine,

– and basis of the associated eigenspaces are readily

available.
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The goal of this paper is to extend this MPS frame-

work, presented in section 2, to the computation of

eigenmodes and eigenvalues of plates. Because of fun-

damental limitations of the Vekua theory, we apply the

method only on star-shaped plates with smooth bound-

aries. Our first contribution is the analysis of an ap-

proximation scheme based on the Vekua theory, given

in section 3. This provides some bounds on the approxi-

mation error of a solution of eqn. (1) by sums of Fourier-

Bessel functions in Sobolev norms, based on similar re-

sults for the simpler case of the Helmholtz equation.

Our second contribution, described in section 4, is the

formulation of the problem in a way compatible with

the MPS, and its numerical evaluation presented in sec-

tion 5. We discuss the extension to more general shapes,

and various implementation matters, in section 6.

2 The method of particular solutions

The method of particular solutions was introduced by

Fox, Henrici and Moller (FHM) [4] for the case of eigen-

modes of the Laplace operator in a L-shaped domain

with a singular corner.

The basic idea of this method is, instead of con-

sidering the entire space in which the eigenmodes are

searched (e.g. H1 for the case of the Laplace opera-

tor, approximated by finite element spaces), to con-

sider separately the spaces of solutions of the Helmholtz

equation for different wave numbers. Then, in each of

these spaces, we can look for a nonzero function which

also satisfies the boundary conditions, i.e., an eigen-

mode. While building approximations for a lot of dif-

ferent spaces seem to be counter-productive compared

to the unique approximation needed for a Galerkin ap-

proximation, this alternative scheme is interesting as ef-

ficient approximations can be obtained for these spaces

of solutions to the Helmholtz equation.

The method developed by FHM, for the computa-

tion of eigenmodes of the Laplace operator with Dirich-

let boundary conditions, is as follows. For each wavenum-

ber k, we consider N points xj on the border of the

domain, and a family of N functions φi spanning a

subspace which approximates the set of solutions to

the Helmholtz equation. The considered family, Fourier-

Bessel functions of fractional orders, was specifically

constructed to take into account the singularity aris-

ing in the reentrant corner of the L-shaped domain. In

order to find the eigenfrequencies, one has to construct

a square matrix M(k) that contains the values of the

functions φj at the N points of the border, and to com-

pute its determinant d(k):

d(k) = detM(k) =

∣∣∣∣∣∣∣
φ1(x1) · · · φN (x1)

...
...

φ1(xN ) · · · φN (xN )

∣∣∣∣∣∣∣ (2)

If k is an eigenfrequency, there is a non-zero solution to

the Helmholtz equation with values zero on the bound-

ary, and its approximation
∑
αiφi is thus close to zero

at the sampling points, with nonzero coefficients αi.

The image of the vector of coefficients (αi) by the ma-

trix M(k) is precisely the vector of the values of
∑
αiφi

on the points of the border. This means that the deter-

minant of the matrix M(k) is close to zero. Therefore,

the eigenfrequencies are obtained as local minima of

d(k).

Numerous variants of this method, using different

approximation schemes, have been developed since the

original article. They mostly differ by the functions used

to approximate the solutions: the MFS uses fundamen-

tal solutions, the NDIF [3] uses Bessel functions of the

first kind of order 0, etc.

As pointed out in [5], this simple method has known

limitations. The discretization of the space of solutions

and the sampling of the boundaries must be of the same

size, and more importantly, the matrix M(k) gets ill-

conditioned as the number N of functions grows. In-

deed, using a larger family of functions φi, in order to

have better approximations of the modes, makes the

problem numerically unstable. An interpretation of this

fact is that the algorithm does not search for a non-

zero function inside the domain with value zero on its

boundary, but actually for a function with non-zero co-

efficients of its expansion, with zero value on the bound-

ary. The properties of the approximating families are

such that having non-zero expansion coefficients does

not ensure significant values of the function inside the

domain.

To avoid these problems, Betcke and Trefethen [5]

suggest to solve, for each k, the following optimization

problem :

τ(k) = min
u
‖Tu‖2L2(∂Ω) such that ‖u‖2L2(Ω) = 1 and ∆u+k2u = 0

(3)

where T is the trace operator on the boundary ∂Ω.

Then, k is an eigenfrequency if and only if τ(k), called

the tension, is zero.

This problem can be discretized as follows. A family

of functions (φi) is chosen for the approximation of the

solutions of the Helmholtz equation. For a function with

expansion coefficients u = (u1, . . . , uN ),

‖Tu‖2L2(∂Ω) = u?Fu
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‖u‖2L2(Ω) = u?Gu

where the coefficients of the matrices F and G are

Fij = 〈Tφi, Tφj〉L2(∂Ω) , Gij = 〈φi, φj〉L2(Ω) (4)

These scalar products can be estimated by sampling

the domain and its border, and using a Monte-Carlo

approximation of the integrals. The optimization prob-

lem (3) can be replaced by the generalized eigenvalue

problem

λFu = Gu (5)

for which the largest eigenvalue is the inverse of τ(k).

Note that here, the size of the matrices is the size of the

approximating family, and does not depend on the num-

ber of samples used in the domain and on its boundary.

The eigenfrequencies are found as the local minima

of τ(k). This method offers additional advantages. The

coefficients of the expansion of the eigenmodes are read-

ily available as the first eigenvector of eqn. (5), and n-

multiple eigenfrequencies are characterized by the fact

that the n first eigenvalues of eqn. (5) exhibit a local

minima. Here, a basis of the eigenspace is obtained us-

ing the n first eigenvectors of eqn. (5). Note that this

basis has no reason to be orthogonal, as it is the vectors

of the coefficients of the expansions of the basis func-

tions that are orthogonal, not the functions themselves.

The same method, with a slightly different imple-

mentation, was used by Barnett and Berry [6] to com-

pute high frequency modes of quantum cavities. As they

considered only domains with smooth boundaries, plane

wave families were sufficient for the application of the

method.

To generalize this method to plates, two adaptations

are needed:

– an approximation scheme for solutions of eqn. (1)

has to be developed

– the boundary conditions encountered in plate prob-

lems have to be modeled in a way compatible with

formulation eqn. (3).

These two points are the topics of the next two sections,

respectively.

3 Approximation of plate eigenmodes

In this section, we prove that solutions of eqn. (1), with

arbitrary boundary conditions, can be approximated by

sums of Fourier-Bessel functions and modified Fourier-

Bessel functions. We first give a short account of the

Vekua theory for the Laplace operator, and then extend

these results to the bi-Laplace operator.

Fig. 1 A star-shaped domain satisfying the exterior cone
condition with angle λπ

The domain where the functions are defined is as-

sumed to be star-shaped, and to contain the ball cen-

tered on the origin of radius ρh, where h is the diam-

eter of the domain. Furthermore, we assume that the

domain satisfies the exterior cone condition with angle

λπ. This means that each point of the border is the

vertex of a cone of angle λπ which does not intersect

the interior of the domain. Such a domain is pictured

on figure 1.

In the following, we give the approximation bounds

in weighted Sobolev norms defined by

‖u‖2m,k =

m∑
p=0

1

k2p

∑
p1+p2=p

∫
Ω

∣∣∣∣ ∂p

∂xp1∂yp2
u

∣∣∣∣2dxdy (6)

3.1 Vekua theory for the Laplace operator

A simple example of an approximation of a solution

to a differential equation is the case of holomorphic

functions. These functions, solutions to the Cauchy-

Riemann equations, can be, on a simply connected do-

main, approximated by polynomials of the complex vari-

able. By taking the real part of an holomorphic function

and of its approximations, it is shown that we can ap-

proximate an harmonic function, solution to ∆u = 0,

by harmonic polynomials in R2.

The Vekua theory, exposed in [7] and summarized in

[8], gives similar results for solutions of elliptic PDEs by

generalizing the operation “taking the real part”, which

allows us to map holomorphic functions to harmonic

functions, to solutions of these PDEs. Using these oper-

ators, which are continuous and continuously invertible,

approximation of holomorphic functions by polynomials

of the complex variable is translated to approximation

of solutions to the PDEs by the images of polynomials.
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In the case of the Helmholtz equation

∆u+ λu = 0 (7)

Further details on these operators and their properties

in Sobolev spaces can be found in [9].

The main result of Moiola et al. is that the solu-

tions of eqn. (7) can be approximated by generalized

harmonic polynomials, i.e. functions of the form

uL =

L∑
n=−L

αnJn(kr)einθ (8)

where (r, θ) are the polar coordinates.

When λ is strictly positive, Moiola et al. [9] have

shown that there exists a generalized harmonic polyno-

mial of order at most L such that

‖u−QL‖j,k ≤ C(1 + (kh)j+6)e3(1−ρ)kh/4(
log(L+ 2)

L+ 2

)λ(K+1−j)

‖u‖K+1,k

(9)

In the case where λ < 0, the bound is multiplied by

e3kh/2.

When the function to be approximated is infinitely

differentiable in an open domain containing Ω, the con-

vergence is exponential in L [10].

Moiola et al. used this results to analyze the ap-

proximation of solutions of eqn. (7) by sums of plane

waves [11]. The orders of convergence are identical to

the generalized harmonic polynomials case.

3.2 Extension to plates eigenmodes

Eigenmodes of an homogenous plate of rigidity D, spe-

cific mass ρ and thickness h, with in-plane tension T ,

are solutions of

D∆2w + T∆w − ρhω2w = 0. (10)

In order to approximate such functions, we reduce

this problem to the approximation of two solutions of

the Helmholtz equation. Indeed, solutions of equation

(10) can be decomposed as a sum of two solutions of

equation (7), with parameters deduced from the prop-

erties of the plate.

Lemma 1 Let w a solution of (10) in the sense of dis-

tributions. Then w can be decomposed as the sum of

w1 solution of ∆w1 − λ1w1 = 0, and w2 solution of

∆w2 − λ2w2 = 0, where λ1 and λ2 are the zeros of

Dλ2 + Tλ− ρhω2. (11)

Furthermore, if w ∈ HK+2, then

||w1||K,k1 ≤
2k2+
δλ
||w||K+2,k1 (12)

||w2||K,k2 ≤
2k2+
δλ
||w||K+2,k2 . (13)

where k1 =
√
|λ1| and k2 =

√
|λ2|, k+ being the largest,

and δλ =
√
T 2 + 4Dρhω2/D the difference between λ1

and λ2

Proof Analysis : assuming the decomposition, we find

∆w − λ2w = (∆w1 − λ2w1) + (∆w2 − λ2w2) (14)

= (λ1 − λ2)w1 + 0 (15)

A similar computation for w2 gives

w1 =
1

λ1 − λ2
(∆w−λ2w), w2 =

1

λ2 − λ1
(∆w−λ1w).

Note that λ1 and λ2 are always distinct as δλ is always

strictly positive.

Synthesis : we check that w = w1 + w2 :

w1 + w2 =
1

λ1 − λ2
(∆w − λ2w)− (∆w − λ1w) (16)

= w (17)

Then that ∆w1 − λ1w1 = 0 :

∆w1 − λ1w1 =
1

λ1 − λ2
(
(∆2w − λ2∆w)− (λ1∆w − λ1λ2w)

)
(18)

=
1

λ1 − λ2
(
∆2w − (λ2 + λ1)∆w + λ1λ2w

)
(19)

= 0 (20)

The last equality comes from the fact that λ1 and λ2
are the zeros of the polynomial Dλ2 + Tλ− ρhω2. We

also find that ∆w2 − λ2w2 = 0.

Finally, if w ∈ HK+2, then

‖w1‖K,k1 ≤
1

|λ1 − λ2|
(‖∆w‖K,k1 + λ2‖w‖K,k1) (21)

≤ 1

δλ

(
k21‖w‖K+2,k1 + k22‖w‖K+2,k1

)
(22)

≤
2k2+
δλ
‖w‖K+2,k1 (23)

The result is identical for w2.

Remark 2 In the case where no tension is applied to

the plate, i.e. T = 0, we have k1 = k2 = (ρh/D)1/4
√
ω =

k, δλ = 2k2 and the results can be simplified as :

||w1||K,k ≤ ||w||K+2,k, ||w2||K,k ≤ ||w||K+2,k.
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Remark 3 Two orders are lost in the majorizations

(12) and (13) : the norm of order K of both compo-

nents of w are bounded by their norm of order K + 2.

It is impossible, in the general case, to have a better

bound. Let consider, on a disk sector centered at the

origin, the function f defined by f = eiθ/2(J1/2(r) −
I1/2(r)) in polar coordinates. This function is solution

of ∆2w − w = 0, and can be decomposed as the sum

of f1 = eiθ/2J1/2(r), solution of ∆f1 + f1 = 0, and

f2 = −eiθ/2I1/2(r), solution of ∆f2 − f2 = 0. These

two functions have a radial behavior at the origin simi-

lar to r1/2, and thus are not in H3. Their sum however

behaves like r5/2, and is in H4.

If λ1, or λ2, is negative, the corresponding compo-

nent of w can be readily approximated by generalized

harmonic polynomials or plane waves using the results

of Moiola et al. [11]. If λ1 or λ2 is positive, the as-

sociated component can be approximated in a similar

way. In that case, we use either a family of modified

Fourier-Bessel functions; where the Bessel functions Jn
are replaced by modified Bessel functions In, or a fam-

ily of exponential functions ek·x instead of plane waves.

The bounds on the approximation error are similar.

Theorem 4 Let Ω be a domain satisfying the assump-

tions of this section, K ≥ 1 integer, and w ∈ HK+2 ver-

ifying conditions of lemma 1. Then for all L > K, there

exist two generalized harmonic polynomials PL and QL
with parameters λ1 and λ2, of degree at most L such

that for all j ≤ K,

‖w − (PL +QL)‖j,k+ ≤ C
k2+
δλ

(1 + (k+h)j+6)e
3
4 (3−ρ)k+h(

ln(L+ 2)

L+ 2

)λ(K−j)

(k+h)K−j‖w‖K+2,k− ,

(24)

where k− is the smallest of k1 and k2, and k+ the

largest. If λ1 and λ2 are both negative, the bound can

be divided by e3/2k+h.

Proof The first step of the proof is to decompose w

using lemma 1. Using theorem 2.2.1.ii and remark 1.2.6

from [12], we can approximate these two components

by generalized harmonic polynomials, modified if λ is

positive.

Let us assume λ1 < 0, λ2 > 0, with |λ2| > |λ1|.
Other cases can be treated similarly.

We have

‖w − (PL +QL)‖j,k+ ≤ ‖w1‖j,k+ + ‖w2‖j,k+
≤ ‖w1‖j,k1 + ‖w2‖j,k2
≤ C(1 + (k1h)j+6)e

3
4 (1−ρ)k1h(

ln(L+ 2)

L+ 2

)λ(K−j)

(k1h)K−j‖w1‖K,k1

+ C(1 + (k2h)j+6)e
3
4 (3−ρ)k2h(

ln(L+ 2)

L+ 2

)λ(K−j)

(k2h)K−j‖w1‖K,k2

≤ C
k2+
δλ

(1 + (k+h)j+6)e
3
4 (3−ρ)k+h(

ln(L+ 2)

L+ 2

)λ(K−j)

(k+h)K−j‖w‖K+2,k−

Remark 5 For plates without in-plane tension, the re-

sult is slightly simpler. In that case, the roots of eqn.

(11) have same absolute values and opposite signs. We

thus have

‖w − (PL +QL)‖j,k ≤ C(1 + (kh)j+6)e
3
4 (3−ρ)kh(

ln(L+ 2)

L+ 2

)λ(K−j)

(kh)K−j‖w‖K+2,k.

(25)

Remark 6 We prove the approximation result for sums

of Fourier-Bessel functions. However, as Fourier-Bessel

functions can be approximated by sums of plane waves,

modified Fourier-Bessel functions can be approximated

by sums of exponential function of the type ek·x with

constant norm of k. This allows an approximation of

solutions of eqn. (10) by sums of plane waves and ex-

ponential functions.

4 Boundary conditions

Boundary conditions usually encountered in plate prob-

lems (clamped edges, simply supported edges and free

edges) are not as such readily usable for the numeri-

cal scheme proposed here, and thus need to be modeled

differently.

For clamped edges, the displacement and its normal

derivative are zero. The tension for clamped boundary

conditions is then:

tc =

∫
Γ

|w|2 +
1

k2

∫
Γ

∣∣∣∣∂w∂n
∣∣∣∣2 .

A simply supported edge has zero displacement and tor-

sion moment Mn

ts =

∫
Γ

|w|2 +
1

D2k4

∫
Γ

|Mn|2 .
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Finally, free edges have zero torsion moment and Kelvin-

Kirchhoff edge reaction Kn

tl =
1

D2k4

∫
Γ

|Mn|2 +
1

D2k6

∫
Γ

|Kn|2 .

The torsion moment and the Kelvin-Kirchhoff edge re-

action writes [13]

Mn = −D
(
∂2w

∂n2
+ ν

∂2w

∂t2

)

Kn = −D
(
∂3w

∂n3
+ (2− ν)

∂3w

∂n∂t2
+

1− ν
R

(
∂2w

∂n2
− ∂2w

∂t2

))
where ν is the Poisson ratio of the material, and R the

curvature radius of the boundary.

The constants 1/k2, 1/D2k4 and 1/D2k6 in front of

some integrals not only make the quantities homoge-

neous, but also improve the numerical stability as the

contribution of the two integrals are rescaled to have

the same order of magnitude. For instance, in the case

of tc estimated using plane waves, the first term con-

tains products of planes waves, while the second term

contains products of derivatives of plane waves, which

are the plane waves themselves multiplied by the scalar

product of the wave vector and a unit vector normal

to the boundary. With no rescaling, the second term

would be more and more influent as the frequency in-

creases. This rescaling is similar to the weights used to

define the norms ‖ · ‖m,k in eqn. (6).

Note that for a plate with various boundary con-

ditions along the border, the corresponding tension is

the sum of the tension for the different boundary con-

ditions, integrated on their respective domain.

5 Numerical results

We now compare the methods with analytical results for

simple cases, and with numerical results obtained with

Cast3M [14], a widely-used FEM simulation program.

To avoid technicalities, the simulated plates are star-

shaped with smooth boundaries. The treatment of more

general shapes is discussed in the next section. Since

these numerical tests are done without in-plane tension,

we can use the wavenumber k = (ρ/D)1/4
√
ω to express

the eigenfrequencies. In the case of in-plane tension, the

wavenumbers used to generate the Fourier-Bessel func-

tions (resp. plane waves) and modified Fourier-Bessel

functions (resp. exponential functions) are computed

according to lemma 1.

We first test the method on a circular plate of radius

1, with various boundary conditions. Here, we use plane

waves, as eigenmodes of circular plates are sums of a

Fourier-Bessel function and a modified Fourier-Bessel

0

0. 5

1

1. 5

2

2. 5

3

3. 5

2 3 4 5 6 7 8 9 10

Te
n
si
o
n

K

Fig. 2 Inverses of the four largest eigenvalues (the first one
being the tension) of discrete problem (5), for the clamped
circular plate

Clamped Simply supported Free
Leissa MPS-PW Leissa MPS-PW Leissa MPS-PW

1 3.196 3.196 2.23 2.22 2.29 2.29
2 4.611 4.611 3.73 3.73 3.01 3.01
3 5.906 5.905 5.06 5.06 3.50 3.50
4 6.306 6.306 5.46 5.45 4.53 4.53
5 7.144 7.144 n/a 6.32 4.65 4.64

Table 1 Low eigenfrequencies for a circular plate with var-
ious boundary conditions, in Leissa [15] and computed with
the MPS and plane waves (MPS-PW).

function, making the numerical problem trivial. Table

1 gives the computed eigenfrequencies and the values

given in Leissa [15] for low-frequency modes. Figure 2

shows the tension as a function of the frequency in the

clamped case, and the next three eigenvalues of the nu-

merical problem (5). These can be used to identify mul-

tiple eigenvalues and to compute a basis of the associ-

ated eigenspaces. Examples of eigenmodes are given for

the three boundary conditions on figure 3. In these nu-

merical experiments, the boundary of the disk was dis-

cretized with 2048 points, its interior with 1024 points

drawn using the uniform distribution on Ω, and the

number of plane waves (which is also the size of the

numerical problems to solve) was taken as 8k, which in

this case ranges from 28 to 80.

We now compute eigenfrequencies and eigenmodes

of a second plate, of mode complex shape, with bound-

aries defined by the parametric equations

{
x = cos t

y = sin t+ sin 2t
3

t ∈ [0, 2π (26)
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k=3.196
k=8.347

k=5.451

k=9.724

k=6.206

k=9.824

Fig. 3 Some examples of eigenmodes, for simple and double eigenvalues, of the circular plate with clamped, simply supported
and free boundary conditions

Table 2 gives the first ten eigenfrequencies of this

plate with the three types of boundary conditions :

clamped, simply supported and free. The proposed method,

MPS with plane waves (MPS-FB), uses 2048 points

on the border and 1024 points inside. The number of

planes waves is 10k, which here ranges from 20 to 80.

For the clamped conditions, the results using Fourier-

Bessel functions are also given (method MPS-FB). We

compare our results with those obtained by the FEM,

as implemented in the Cast3M package, with 6624 ele-

ments and the border discretized by 180 segments.

For two eigenmodes of the clamped plate, we give in

table 3 the estimated eigenfrequencies with varying size

of the discrete problems for FEM and the MPS-PW,

and compare them to the values obtained in [2] with

the MFS (with an unspecified size). These two modes,

computed with the MPS-PW, are shown on figure 4.

6 Discussion

We now discuss some implementation details, relative

to the treatment of more general shapes, or the accel-

eration of the computations.
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Clamped Simply supp. Free
FEM MPS-PW MPS-FB FEM MPS-PW FEM MPS-PW

1 3.3498 3.3782 3.3562 2.3819 2.4061 2.2189 2.2000
2 4.5931 4.5944 4.5864 3.6789 3.6733 2.3473 2.4001
3 4.8717 4.9275 4.8815 3.9539 3.9993 2.7643 2.7481
4 5.8588 5.8376 5.8366 4.9799 4.9505 3.4544 3.4222
5 6.1655 6.2067 6.1987 5.2874 5.3216 3.7476 3.7623
6 6.3869 6.4567 6.4527 5.4832 5.5456 4.1207 4.0993
7 7.1179 7.0738 7.0738 6.2658 6.2147 4.2170 4.2004
8 7.4596 7.4949 7.4949 6.5912 6.6188 4.8551 4.7985
9 7.7190 7.7740 7.7590 6.8597 6.9058 4.9701 4.9845
10 7.8910 7.9300 7.9660 6.9979 7.0308 5.4432 5.4316

Table 2 First ten eigenfrequencies, expressed in wavenumber k, of the second plate with various boundary conditions, for
FEM, MPS with plane waves (MPS-PW) and MPS with Fourier-Bessel functions (MPS-FB, clamped conditions only)

MFS FEM MPS-PW
number of elements number of plane waves

246 1018 6624 26966 50 60 70
9.11259 8.9329 9.0245 9.0590 9.0637 9.1068 9.1121 9.1126
9.27903 9.1025 9.1830 9.2122 9.2165 9.2651 9.2722 9.2787

Table 3 Eigenfrequencies for two modes of the clamped second plate, with various discretization sizes, computed by FEM (as
implemented in Cast3M) and MPS-PW. Comparison with MFS [2]

Fig. 4 Eigenmodes of the second plate, for k = 9.1126
(left) and k = 9.2787 (right) computed by MFS-PW, for the
clamped boundary conditions

6.1 Fourier-Bessel vs. plane waves

As shown by the numerical experiments, both Fourier-

Bessel functions and plane waves can be used to approx-

imate eigenmodes. They have similar approximation

properties, but differ implementation-wise. Fourier-Bessel

functions are orthogonal on a disc, ensuring better sta-

bility, while plane waves are more and more ill-conditioned

as their number increases. However, this can be treated

by pre-conditioning the plane waves family with a dis-

crete Fourier Transform, mapping the plane waves to

approximations of the Fourier-Bessel functions.

The main advantage of the plane waves is the straight-

forward computation of their derivatives : differentiat-

ing a plane wave along a certain direction amounts to

multiplying it with the scalar product of its wave vector

with a unit vector. This makes the construction of the

matrices both easy to implement and fast.

6.2 Shapes

The proposed method relies on an approximation scheme

for solutions to the equation (1), and therefore is lim-

ited to cases where such approximations are available.

In particular, the approximation scheme assumes a star-

shaped domain. In the case of a simply connected, but

non-star convex, domain, the approximation is not guar-

anteed to succeed. A possible way to overcome the prob-

lem is to cut the domain into star-convex subdomains,

to approximate the solutions of (1) in these subdo-

main, and to add terms in the tension ensuring that the

displacement, normal derivative of the displacement,

bending moment and strain have the same value at both

sides of the internal boundaries. A similar method as al-

ready been applied to the particular case of polygonal

membranes [16].

Other cases of non-convex domains are domains with

holes, but star-convex if the holes are filled. In that

case, following Vekua, one can approximate solutions of

(1) by adding to the family of planes waves or Fourier-

Bessel functions, the sets of Fourier-Bessel functions of

second kind einθYn(kr) and einθKn(kr), one for each

hole, centered on a point chosen in each of them. This

type of approximation can be compared to the approx-

imation of holomorphic functions given by the Runge

theorem. An application to membranes can be found in

[17].
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6.3 Singularities

The domains considered here have smooth boundaries.

This guarantees that the eigenmodes of the plates are

smooth, and that the convergence of the approxima-

tions is fast. However, as shown in theorem 4, singulari-

ties, which can appears at corners of a domain with non-

smooth boundaries, slow down the convergence of the

approximations. The size of the discretization for such

cases is then larger than for smooth boundaries, possi-

bly too large to guarantee the numerical stability of the

computations. To accelerate the convergence, FHM and

BT use fractional Fourier-Bessel functions centered on

the singular corner of the domain (in their numerical

experiments, an L-shaped polygon). This idea as been

used for plates in a different setting by De Smet et al.

[18].

Note that, for a plate with polygonal holes, at least

a corner of the hole is singular. In that case, it is im-

possible to use fractional Fourier-Bessel functions, as it

is impossible to define them on a domain containing a

path around the origin. In that case, one can combine

fractional Fourier-Bessel function with the method de-

scribed in the previous section [17].

6.4 Numerical considerations

Although the numerical stability is improved compared

to the determinant based MPS, the improved version

is still prone to instabilities when a large approxima-

tion order is used. This instabilities are further am-

plified in the case of plates, where modified Fourier-
Bessel functions, or exponential functions, are included

in the approximating families. The behavior of these

functions are such that they are non-negligible only on

a small region near the boundary of the domain. Using

the Monte-Carlo approximation with uniform density

to estimate the coefficients of the matrices is thus un-

stable. Using a non-uniform density of samples, with

more samples near the border would be a way to im-

prove the stability of the estimations, in a way similar

to what is used in [19] , where the reconstruction of a

solution of the Helmholtz equation on a disc is improved

by placing a fraction of the samples on the border of the

disc.

6.5 Speeding up the eigenvalue search

In order to locate the minima of the tension, the pro-

posed algorithm simply computed it on linearly spaced

values in the interval we were interested in. However,

the particular behavior of the tension (and more gener-

ally, of the eigenvalues of problem (5)) could be used to

accelerate the search of these minima. Indeed, the ten-

sion is a sequence of branches which behave more or less

as parabolas. Newton iterations, along with the compu-

tation of the derivatives of the eigenvalues of problem

(5), could therefore be used to quickly locate the min-

ima.

7 Conclusion

This paper has described the extension of the Method

of Particular Solutions for the computation of eigen-

modes of plates. This method has numerous advan-

tages. It can be used with any approximation scheme

for the solutions of the studied equation ; in this paper,

we used Fourier-Bessel functions and plane waves, but

the method could be extended with fractional Fourier-

Bessel functions in order to treat singularities. Its for-

mulation also offers a large flexibility in the discretiza-

tion of the domain, and independently, in the size of

the numerical problem. The determination of multiple

eigenvalues and eigenmodes is also straightforward. Fi-

nally, the so-called tension, that has to be minimized to

find the eigenfrequencies, has a specific shape that can

be used to speed up the search. Future improvements

include sampling schemes yielding better stability of the

numerical problems, and using this method to compute

high frequency eigenmodes of plates in an efficient way.

Reproducible research

The Matlab/Octave code used to compute eigenfrequen-

cies and eigenmodes of figures 3 and 4 is available online

[20].
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