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We compute generalized absorption and extinction cross-sections of an optical dipole nanoantenna in a structured environment.
The expressions explicitly show the influence of radiation reaction and the local density of states on the intrinsic absorption
properties of the antenna. Engineering the environment could allow to modify the overall absorption as well as the frequency and
the linewidth of a resonant antenna. Conversely, a dipole antenna can be used to probe the photonic environment, in a similar way
as a quantum emitter.

1. Introduction

It is well known that the emission frequency and linewidth
of a dipole quantum emitter is modified by its local
environment [1–4]. The linewidth directly depends on the
photonic local density of states (LDOS) which accounts for
the number of radiative and nonradiative channels available
for the emitter to relax in the ground state. The change
in the emission frequency and linewidth induced by the
environment can be described by considering the transition
dipole as a classical dipole oscillator [2, 4]. Therefore,
similar behaviors are expected for a dipole antenna (or a
nanoparticle) interacting with its environment, the involved
dipole being in this case the induced dipole that is responsible
for scattering and absorption. Indeed, changes in the induced
dipole dynamics in optical antennas have already been
observed [5, 6], and the parallel with spontaneous emission
dynamics has been mentioned on a qualitative phenomeno-
logical ground. Energy shifts and linewidths of plasmonic
nanoparticles have also been discussed recently, based on
general properties of damped harmonic oscillators [7]. A
connection between LDOS maps and the scattering pattern
of plasmonic structures has been established in a specific
imaging configuration [8]. In this context, it seems that a
general discussion of the influence of the environment on
the absorption of an optical dipole antenna or nanoparticle
would be useful. The purpose of this paper is to address

this question, using a rigorous framework based on scat-
tering theory, and to illustrate the conclusions on a simple
example.

In this paper, we investigate the role of the environment
on the absorption cross-section of an optical dipole antenna
using a rigorous theoretical framework. We show that it is
possible to modify the overall absorption and its spectral
properties by engineering the environment, and in particular
the photonic LDOS. Conversely, it is possible to probe the
environment using a resonant nanoantenna, specific mea-
surements being able to produce LDOS maps. In Sections
2 and 3, we derive the exact expressions of the dressed
electric polarizability of a dipole antenna in an arbitrary
environment and deduce the expression of the generalized
absorption and extinction cross-sections. In Section 4, we
discuss qualitatively the physical mechanisms affecting both
the resonance frequency and the linewidth of a resonant
antenna, using a simplified model. In Section 5 we study
numerically a simple but realistic example, based on the
rigorous expression derived in Section 2. This allows us to
illustrate the general trends and to give orders of magnitude.
In Section 6, we summarize the main conclusions.

2. Dressed Polarizability

This section is devoted to the computation of the dressed
polarizability of an optical dipole antenna or nanoparticle
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Figure 1: Optical dipole antenna of arbitrary shape in a structured
environment. A point r0 inside the antenna is used to define its
position.

(i.e., the polarizability that accounts for the interaction with
the environment). To proceed, we follow the same procedure
that has been used previously to compute the polarizability
in vacuum [9–11]. We consider an electrically small particle
(the generic term particle will be used to denote either a
subwavelength optical antenna or a nanoparticle) of volume
V and of permittivity ε(ω) embedded in an arbitrary
environment, the particle lying at position r0 (see Figure 1).
We assume that position r0 lies in vacuum (the local
refractive index at r0 is assumed to be unity). To describe light
propagation in the environment, we use the electric dyadic
Green function G which connects the electric field at position
r to an electric dipole source at point r′ through the relation
E(r,ω) = μ0ω2G(r, r′,ω)p(r′). We denote by Eext the field
in the environment in the absence of the particle (exciting
field). The total electric field E at point r and at frequency ω
reads

E(r,ω) = Eext(r,ω) + k2
0

∫
V

G(r, r′,ω)[ε(ω)− 1]

× E(r′,ω)d3r′,
(1)

where k0 = ω/c, c being the speed of light in vacuum.
The approximation of electrically small particle amounts
to considering that the electric field is uniform inside the
particle. Under this condition, the expression of the total
electric field inside the particle (at point r0) becomes

E(r0,ω) = Eext(r0,ω) + k2
0[ε(ω)− 1]E(r0,ω)

×
∫
V

G(r0, r′,ω)d3r′.
(2)

We now split the integral of the Green dyadic into its singular
part −L/k2

0 and its nonsingular part VGreg(r0, r0,ω) where
we have assumed that Greg(r0, r′,ω) is constant over the
volume of the nanoparticle. Note that L is real since it
corresponds to the singularity of the Green tensor at a point

that lies in vacuum (the Green tensor is computed in the
absence of the particle) [12–14]. Equation (2) becomes

E(r0,ω) =
{

I + [ε(ω)− 1]L

−k2
0V[ε(ω)− 1]Greg(r0, r0,ω)

}−1
Eext(r0,ω).

(3)

The expression of the polarizability follows be writing the
induced electric dipole moment of the particle in the form

p(r0,ω) =
∫
V

P(r′,ω)d3r′ = Vε0[ε(ω)− 1]E(r0,ω)

= ε0α(ω)Eext(r0,ω).

(4)

The last line defines the dressed polarizability α(ω), that in
the most general situation is a tensor. Inserting (3) into (4),
one obtains

α(ω)= V[ε(ω)− 1]

×
{

I + [ε(ω)−1]L− k2
0V[ε(ω)−1]Greg(r0, r0,ω)

}−1
.

(5)

A more useful expression of the dressed polarizability is
obtained by defining a reference polarizablity α0(ω). A usual
choice for this reference is the quasi-static polarizability of
the particle in vacuum [11], that reads

α0(ω) = V[ε(ω)− 1]{I + [ε(ω)− 1]L}−1. (6)

Note that in the case of a spherical particle, the singularity
(or depolarization) dyadic is L = I/3 so that α0(ω) would
simplify into the well-known (scalar) quasi-static expression
α0 = 3V(ε − 1)/(ε + 2). Using (5) and (6), the dressed
polarizability has the final form:

α(ω) = α0(ω)
{

I− k2
0Greg(r0, r0,ω)α0(ω)

}−1
. (7)

This expression is the main result of this section. It shows
that the dressed polarizability of a particle depends on
the environment, the influence of the environment being
fully described by the non-singular part of the dyadic
Green function VGreg(r0, r0,ω). Note that (7) is the explicit
expression of the effective polarizability discussed in [4].

For a resonant antenna or nanoparticle (e.g., supporting
a plasmon resonance), it is instructive to rewrite (7) in the
form:

α(ω)−1 = α0(ω)−1 − k2
0Greg(r0, r0,ω). (8)

The resonance frequency of the dressed polarizability is
solution of the equation Re[α−1

0 (ω) − k2
0Greg(r0, r0,ω)] = 0,

while the linewidth is given by Im[α−1
0 (ω)−k2

0Greg(r0, r0,ω)].
The influence of the environment on the resonance lineshape
is made explicit by this simple analysis.
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3. Generalized Absorption and
Extinction Cross-Sections

The expression of the dressed polarizability is the starting
point to compute generalized absorption and extinction
cross-sections in an arbitrary environment. To carry out this
derivation, we start with the expression of the time-averaged
power absorbed inside the particle, given by

Pa = 1
2

∫
V

Re
[

j(r′,ω) · E∗(r′,ω)
]
d3r′, (9)

where j(r′,ω) = −iωε0[ε(ω) − 1]E(r′,ω) is the current
density induced in the particle. As the electric field is
assumed to be uniform inside the particle, the absorbed
power becomes

Pa = ωVε0 Im ε(ω)
2

|E(r0,ω)|2. (10)

Using (4), it can be rewritten as

Pa = ωε0 Im ε(ω)

2V |ε(ω)− 1|2 |α(ω)Eext(r0,ω)|2. (11)

To define a generalized absorption cross-section, we have to
introduce an incident local energy flux φext. Since the exciting
field at the position of the particle is Eext(r0,ω), we define the
incident local energy flux using the expression for a plane
wave φext = |Eext(r0,ω)|2/(2μ0c). This definition is arbitrary,
but has the advantage to coincide with the standard one when
the particle lies in a homogeneous medium. The generalized
absorption cross-section is then given by the ratio Pa/φext.
Using the relation Im [α0][α0α

∗
0 ]−1 = Im ε(ω)/[V |ε(ω) −

1|2]I (see Appendix A for a proof), we obtain the final
expression of the generalized absorption cross-section:

σa(ω)I = k0 Im
[
α0(ω)][α0(ω)α∗0 (ω)

]−1 |α(ω)Eext(r0,ω)|2
|Eext(r0,ω)|2 .

(12)

Equation (12) is a central result of this paper. It deserves
some remarks before we analyze its consequences. Although
(12) involves tensor notations, the absorption cross-section
σa(ω) is a scalar quantity. Expression (12) is exact and
has been obtained under the only assumption that the
electric field is uniform inside the particle (approximation
of electrically small particle). It can be used, together with
(7), to discuss the influence of the environment on the
optical properties of any particle (or antenna) satisfying
this condition. For a nonabsorbing material, the imaginary
part of the permittivity ε(ω) vanishes, and the quasi-static
polarizability α0 is real. The term Im[α0(ω)] in (12) implies
σa(ω) = 0, as it should be. Finally, let us emphasize that
the generalized absorption cross-section that we have defined
really describes the change of the intrinsic absorption of the
particle induced by the environment (or in other word of
the absorption probability given a local incident power). Its
proper normalization by the local incident energy flux clearly
distinguishes this effect on the absorbed power from that

due to a mere change of the local incident power. It is also
important to stress that although the generalized absorption
cross-section that we have defined is a scalar, it depends on
the orientation of the local exciting electric field, that encodes
the anisotropy of the environment.

Following the same procedure, it is also possible to
compute the extinction cross-section, starting from the
expression of the power extracted from the external field by
the nanoparticle. The latter can be written in the form [11]:

Pe = 1
2

∫
V

Re
[

j(r′,ω) · E∗ext(r′,ω)
]
d3r′. (13)

One obtains

σe = k0
Im
[
α(ω)Eext(r0,ω) · E∗ext(r0,ω)

]
|Eext(r0,ω)|2 . (14)

As for the generalized absorption cross-section, this expres-
sion is exact under the assumption of an electrically small
particle. In the following, we will focus our attention on the
absorption cross-section, but the analyses and the general
trends can be translated to the extinction situation, that can
be relevant to specific experimental configurations and type
of measurements.

4. Qualitative Discussion

Equation (12) can be used to compute the absorption cross-
sections in a given environment. For realistic geometries,
the computation can only be performed numerically (we
will study a simple example in Section 5). For example, it
is possible to use an iteration scheme to solve numerically
the Dyson equation which is the closed form of the
equation governing the Green function similar to (1) [15].
Nevertheless, in order to get some insight based on simple
analytical formulas, we will study an oversimplified situation.
First, we consider a spherical nanoparticle of volume V ,
small enough to be consistent with the electric dipole
approximation that we use throughout this paper. For such
a shape, the singular part of the Green tensor is simply
given by L = I/3 [12, 13]. Second, we assume that the
nanosphere is embedded in an environment that preserves
for Greg(r0, r0,ω) the same symmetry as that of free space
(i.e., Greg(r0, r0,ω) = Greg(r0, r0,ω)I). This is an unrealistic
hypothesis (it would be strictly valid only for a homogeneous
medium or a medium with cubic symmetry), but we shall
use it only to discuss qualitatively general trends. Under these
hypotheses, the quasi-static polarizability reduces to α0(ω) =
3V[ε(ω)− 1]/[ε(ω) + 2], and the dressed polarizability takes
the form:

α(ω) = α0(ω)
1− k2

0Greg(r0, r0,ω)α0(ω)
. (15)

The absorption cross-section becomes

σa(ω) = k0 Im[α0(ω)]
|α(ω)|2
|α0(ω)|2 . (16)

It is clear in this expression that in absence of polarization
anisotropy induced by the environment, the absorption
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cross-section does not depend on the exciting field (this is
not the case in (12)).

In order to get a simple model of a resonant optical dipole
antenna, we consider a metallic nanoparticle described by
Drude permittivity ε(ω) = 1 − ω2

p/(ω
2 + iωγ), where ωp is

the plasma frequency, and γ is the intrinsic collision rate that
describes absorption losses in the bulk material. The real and
imaginary parts of the Green tensor, that both influence the
absorption cross-section, have a well-defined meaning. In
order to make this more explicit, we introduce the photonic
LDOS ρ(r0,ω), connected to the imaginary part of the Green
tensor by

ρ(r0,ω) = 6ω
πc2

Im
[
Greg(r0, r0,ω)

]
. (17)

We also introduce φ(r0,ω) that describes the influence of the
real part of the non-singular Green tensor in a similar way:

φ(r0,ω) = 6ω
πc2

Re
[
Greg(r0, r0,ω)

]
. (18)

Using these definitions, the dressed polarizability of the
metallic nanoparticle reads

α(ω) = 3Vω2
0

[
ω2

0

{
1− π

2
Vωφ(r0,ω)

}

−ω2 − iω
{
γ +

π

2
Vω2

0ρ(r0,ω)
}]−1

,

(19)

whereω0 = ωp/
√

3 is the plasmon resonance frequency of the
bare nanoparticle in the quasi-static limit. This expression
naturally leads to the introduction of an effective frequency
Ω2

eff(ω) = ω2
0{1 − πVωφ(r0,ω)/2} such that the resonant

frequency of the particle in the environment is solution of the
equation Ω2

eff(ω) − ω2 = 0. Similarly, an effective linewidth
γeff(ω) = γ + πVω2

0ρ(r0,ω)/2 can be introduced.
From (12) and (19), we can obtain the expression of the

absorption cross-section in the simplified scalar model:

σa(ω) = 3Vω2
0

c

ω2γ[
Ω2

eff(ω)− ω2
]2

+ ω2γ2
eff(ω)

. (20)

Equation (20), together with the expressions of Ωeff(ω)
and γeff(ω), shows that the real part of the Green function
contributes to a change of the resonance frequency, while the
imaginary part (the LDOS) changes the linewidth. This is
the same behavior as that known for a dipole emitter (either
quantum or classical), although in the present situation
we deal with the dipole induced inside the particle by the
external field. It is interesting to note that the effective line
width γeff(ω) can only be larger than the intrinsic linewidth
γ because of its dependance on the LDOS which is a positive
quantity.

The resonant behavior of σa(ω) and the influence of
the LDOS (through γeff(ω)) deserve to be analyzed more
precisely. Due to the frequency dependence of both Ωeff(ω)

and γeff(ω), the resonance lineshape is in general not
a Lorentzian profile. Moreover, Ωeff(ω) and γeff(ω) are not
independent, since the real and imaginary parts of the Green
function are connected by Kramers-Kronig relations. It is
nevertheless possible to derive the expression of the gener-
alized absorption cross-section at resonance. The resonance
frequency ωa satisfies dσa(ωa)/dω = 0. As described in
Appendix B, using this implicit equation, it is possible to
express σa(ωa) in the form:

σa(ωa) = 3γVω2
0

c

×
⎡
⎣γ2

eff(ωa)

⎧⎨
⎩1

+
ω4
a[

Ω2
eff(ωa)− 2ωaΩ

′
eff(ωa)Ωeff(ωa) + ω2

a

]2

×γ′2eff(ωa)

⎫⎬
⎭
⎤
⎦
−1

,

(21)

where the superscript
′

denotes a first-order derivative.
This expression shows that both the LDOS and its first-
order derivative influence the amplitude of the generalized
absorption cross-section, through γ2

eff(ωa) and γ
′2
eff(ωa),

respectively. An increase of both quantities tends to decrease
the absorption cross-section. In the particular case of an
environment for which the spectral dependence of the LDOS
can be neglected [γ

′2
eff(ω) = 0], we end up with σa(ωa) ∝

1/γ2
eff(ωa). This result can be qualitatively explained in simple

terms. The first step in the absorption process by a metallic
nanoparticle is the excitation of the conduction electron gas.
Then, relaxation can occur either by radiative (emission of
scattered light) or nonradiative channels (absorption due to
electron-phonon collisions). Increasing the photonic LDOS
increases the weight of radiative channels and therefore
reduces absorption. The role of the LDOS in this process is
essentially the same as that in the spontaneous decay rate of
a quantum emitter by coupling to radiation.

5. Metallic Nanoparticle Interacting with
a Perfect Mirror

In order to illustrate the effects discussed above on a real
example and to get orders of magnitudes (i.e., to establish
the possibility of experiments), we study quantitatively in
this section the generalized absorption cross-section of a
silver nanosphere, with radius R = 15 nm, interacting with
a flat perfectly conducting surface (perfect mirror). The
geometry of the system is shown in Figure 2. To describe the
silver nanoparticle, we use the tabulated values of the bulk
permittivity ε(ω) taken from [16].

To compute the generalized absorption cross-section of
the nanosphere, we use the exact expression equation (12). In
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Figure 2: Geometry of the system: A spherical dipole nanoparticle
interacts with a perfect mirror. The dashed sphere corresponds to
the image dipole.

order to compute relative changes, we define the normalized
cross-section σna (ω) = σa(ω)/σvac

a (ω), where σvac
a (ω) is the

absorption cross-section of the bare nanosphere in vacuum:

σvac
a (ω) = k0 Im[α0(ω)]

∣∣∣∣αvac(ω)
α0(ω)

∣∣∣∣
2

. (22)

The vacuum polarizability αvac(ω) is given by

αvac = α0(ω)

{
1− i

k3
0

6π
α0(ω)

}−1

, (23)

with α0(ω) = 3V[ε(ω) − 1]/[ε(ω) + 2] [10, 11]. The
calculation of σna (ω) requires the calculation of the exciting
field Eext and of the Green function Greg(r0, r0,ω) in the
geometry in Figure 2. This is a straightforward application
of the image method, given in Appendix C for completeness.

We show in Figure 3(a) the variations of normalized
LDOS (ratio between the full LDOS and the LDOS in
vacuum) versus both the wavelength and the distance d
between the mirror and the center of the nanoparticle.
Figure 3(b) (red solid line) displays a section corresponding
to λ = 400 nm in Figure 3(a). We observe the well-
known oscillations due to interferences between incident and
reflected waves on the mirror [2]. In the near-field regime
corresponding to d � λ, the relative variations of the LDOS
are on the order of 10%. These plots of the LDOS will be
helpful in the qualitative analysis of the variations of the
generalized absorption cross-section.

To study the influence of the mirror on σa(ω), we first
consider an s-polarized illumination (the incident plane
wave has an electric field linearly polarized along the di-
rection y). In this case, the induced electric dipole in the
nanosphere is oriented along y. As a consequence, σa(ω)
is independent of the direction of incidence (angle θ in
Figure 2). In Figure 4(a), we represent the variations of
the normalized absorption cross-section σna (ω) (generalized
absorption cross-section divided by free-space cross-section)
versus both the wavelength λ and the distance d between
the mirror and the center of the nanoparticle. The plasmon
resonance, corresponding to λ � 360 nm, is visible for d <
100 nm. Figure 4(b) displays a section view of Figure 4(a)
at λ = 361 nm. We observe oscillations of the absorption

cross-section, as a clear signature of the influence of the
mirror. The relative variations are on the order of 5% for
distances d between 50 and 250 nm. The behavior of σna (ω)
can be compared to that of the partial LDOS ρyy(r0,ω) in
Figure 3(b). The oscillations are in opposition, in agreement
with the qualitative analysis presented in Section 4: An
increase of the LDOS tends to decrease the absorption cross-
section.

The case of an illumination with a p-polarized plane
wave (i.e., with an electric field in the x-z plane) can be
analyzed in a similar manner. In this case, the electric dipole
induced in the nanosphere depends on the direction of
incidence θ. We have chosen θ = 45◦ for the sake of
illustration (note that θ = 0 would lead to the same behavior
as that observed with s-polarized illumination). Figures 5(a)
and 5(b) are the same as Figures 4(a) and 4(b), but for p-
polarized illumination. We observe a similar behavior of σna ,
with oscillations corresponding to relative variations of a
few percent. Close to resonance, and for d = 30 nm (which
corresponds to strong nanoparticle mirror interaction in
this simple system), the relative variation of the absorption
cross-section is of the order of 20%. Finally, let us note
that significant changes are observed in the near-field regime
only. For d > λ/2, the influence of interactions with the
environment remains weak.

6. Conclusion

We have described the influence of the environment on the
absorption cross-section of an optical dipole antenna or
a nanoparticle, based on a rigorous framework. We have
derived a generalized form of the absorption cross-section,
based on the only assumption that the electric field is
uniform inside the antenna (electric dipole approximation).
In the case of a resonant nanoparticle (plasmon resonance),
we have analyzed qualitatively the role of the environment on
the resonance frequency and on the linewidth. In particular,
we have identified the role of the photonic LDOS and
shown that an increase of the LDOS results in a reduction
of the generalized absorption cross-section. These effects
have been illustrated on the simple example of a metallic
nanoparticle interacting with a perfect mirror. In the field
of optical nanoantennas, these results could be exploited
along two directions. First, engineering the LDOS around
an optical nanoantenna could allow some control of both
the resonance frequency, and more interestingly on the
level of absorption. Since high absorption remains a serious
drawback of metallic nanoantenna, it might be possible to
reduce absorption by an appropriate structuration of the
environment. Second, measuring changes in the resonance
lineshape of a metallic nanoparticle, as performed, for
example, in [18], should allow a direct mapping of the
LDOS, without using fluorescent emitters. Finally, let us
comment on the possibility of measuring σa in situ. A
potential method could be based on photothermal detection,
in which a probe beam probes the temperature increase of
the nanoparticle due to absorption. Such methods already
offer the possibility of sensitive detection of nanoparticles in
complex environments [19–22].
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Figure 3: (a) map of the normalized LDOS ρ(r0,ω)/ρvac(ω), with ρ(r0,ω) = 2ω/(πc2) Im[Tr Greg(r0, r0,ω)] and ρvac(ω) the LDOS in vacuum,
versus both the wavelength λ and the distance d between the mirror and the center of the nanoparticle. The vertical dashed line is a guide to
precise the wavelength at which panel (b) has been plotted. (b) distance dependence of the LDOS (red solid line) and of the partial LDOS
(blue and black dashed lines) defined by ρii(r0,ω) = 2ω/(πc2) Im[Greg,ii(r0, r0,ω)] with i = x, y, z for λ = 400 nm. The partial LDOS ρii(r0,ω)
drives the dynamics of a dipole oriented along direction i, while the LDOS sums up the contributions of the three orientations. Due to
symmetry in the geometry in Figure 2, the partial LDOS along x and y is equal. In all calculations, the minimum distance d � 2R has been
chosen at the limit of validity of the dipole approximation [17].

Appendix

A. Proof of the Relation Im [α0][α0α
∗
0 ]−1 =

Im ε(ω)/[V |ε(ω)− 1|2]I

In this appendix, we give a proof of the relation Im[α0]·
[α0α

∗
0 ]−1 = Im ε(ω)/[V |ε(ω)−1|2]I. The quasi-static polar-

izability is given by (6):

α0(ω) = V[ε(ω)− 1]{I + [ε(ω)− 1]L}−1. (A.1)

Multiplying the previous expression on the left by {I +
[ε∗(ω)− 1]L}{I + [ε∗(ω)− 1]L}−1, we end up with:

Imα0(ω) = V Im ε(ω)

×
{

I + 2 Re[ε(ω)− 1]L + |ε(ω)− 1|2L2
}−1

.

(A.2)

However, we also have

α0α
∗
0 = V 2|ε(ω)− 1|2

×
{

I + 2 Re[ε(ω)− 1]L + |ε(ω)− 1|2L2
}−1

.
(A.3)

Using (A.2) and (A.3), we obtain the following relationship:

Im [α0]
[
α0α

∗
0

]−1 = Im ε(ω)

V |ε(ω)− 1|2 I, (A.4)

which concludes the proof.

B. Derivation of the Scalar Form of
the Absorption Cross-Section at Resonance

To derive (21), we first compute the derivative of (20) with
respect to ω:

dσa
dω

(ω) = 6Vγωω2
0

c

[{
Ω2

eff(ω)− ω2}2

−2ω
{
Ω′

eff(ω)Ωeff(ω) − ω
}

×{Ω2
eff(ω)− ω2}− ω3γeff(ω)′γeff(ω)

]

/
{[
Ω2

eff(ω)− ω2]2
+ ω2γ2

eff(ω)
}2
.

(B.1)

The resonance frequency ωa is defined by dσa(ωa)/dω = 0.
This gives us a relation satisfied by ωa. By factorizing by
Ω2

eff(ωa) − ω2
a, and by putting this relation into (20), we end

up with:

σa(ωa) = 3γVω2
0

c

×
⎡
⎣γ2

eff(ωa)

⎧⎨
⎩1

+
ω4
a[

Ω2
eff(ωa)− 2ωaΩ

′
eff(ωa)Ωeff(ωa) + ω2

a

]2

×γ′2eff(ωa)

⎫⎬
⎭
⎤
⎦
−1

,

(B.2)

which concludes the derivation of (21).
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Figure 4: (a) map of the normalized absorption cross-section σn
a versus both the wavelength λ and the distance d between the mirror and

the nanosphere. The vertical dashed line is a guide to precise the wavelength at which panel (b) has been plotted. Inset: plot of the absorption
cross-section as a function of the wavelength for d = 30 nm. (b) plot of σn

a and of the partial LDOS ρyy(r0,ω) versus the distance d for
λ = 361 nm. s-polarized illumination.
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Figure 5: (a) same as Figure 4 for an illumination with a p-polarized plane wave, at an angle of incidence θ = 45o. Both the partial LDOS
ρxx(r0,ω) and ρzz(r0,ω) are displayed in (b) since both influence the generalized cross-section in this situation.

C. Computation of the Exciting Field and of the
Green Function of the Perfect Mirror System

The computation of the modified absorption cross-section
for a metallic nanosphere close to a perfect mirror requires
the computation of the exciting field and of the Green tensor
of the system composed by the mirror only. In the case of a
s-polarised incident field given by

Es
inc(r,ω) = E0 exp [ikxx + ikzz]ey , (C.1)

where the incident wave vector is k = k0(− sin θ, 0,− cos θ),
the exciting field at the position r0 of the nanosphere
is simply given by the superposition of the incident and
reflected fields:

Es
ext(r0,ω) = −2iE0 sin [k0 cos θd]ey . (C.2)

In the same way, in the case of a p-polarised incident field
given by

E
p
inc(r,ω) = E0 exp [ikxx + ikzz]{cos θex + sin θez}, (C.3)
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the exciting field reads

E
p
ext(r0,ω) =− 2iE0 cos θ sin [k0 cos θd]ex

+ 2E0 sin θ cos [k0 cos θd]ez.
(C.4)

In order to express the Green function, we use the
dipole image method. If the system consisting of the perfect
mirror at z = 0 is illuminated by a source dipole p =
(px, py , pz) at position r0 = (0, 0, z0), the effect of the mirror
can be replaced by the radiation of an image dipole p′ =
(−px,−py , pz) placed at position r′0 = (0, 0,−z0). This allows
us to compute the Green function of the system in a simple
manner:

G(r, r0,ω)p = G0(r, r0,ω)p + G0
(

r, r′0,ω
)

p′. (C.5)

In this expression, G0 is the Green tensor in vacuum given by

G0(r, r0,ω) = PV

{[
I− u⊗ u +

ik0R− 1
k2

0R2
(I− 3u⊗ u)

]

×exp[ik0R]
4πR

}
− δ(R)

3k2
0

I,

(C.6)

with R = r−r0 and u = R/R, PV denoting the principal value
operator. At the position of the nanosphere (i.e., r = r0), the
singularity part of the Green tensor (needed to compute the
quasi-static polarisability α0 given by (6)) is simply L = I/3.
The regular part (needed to compute the polarisability α
given by (7)) is given by

Greg(r0, r0,ω)p = G0,reg(r0, r0,ω)p + G0
(

r0, r′0,ω
)

p′. (C.7)
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