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We show that the source location problem can be solved in a scattering medium using the fluorescence lifetime and
realistic a priori information. The intrinsic ill-posedness of the problem is reduced when the level of scattering
increases. This work is a proof of principle demonstrating the high potential of quantitative lifetime imaging in
complex media. © 2012 Optical Society of America
OCIS codes: 290.3200, 260.2510.

In a structured material, the excited-state lifetime of a
fluorescent emitter depends on its position [1]. In a dis-
ordered scattering medium, the spontaneous decay rate
(inverse of lifetime) fluctuates due to changes of the local
environment [2–7]. The amplitude of the fluctuations sub-
stantially increases in the multiple scattering regime [5,8]
and/or in the presence of near-field interactions [7,9].
Since the decay rate depends on the location of the emit-
ter, one can wonder whether the inverse source problem
could be solved using the lifetime as data in a given con-
figuration of a disordered medium. The purpose of this
Letter is to address this question based on numerical si-
mulations in a simple geometry. We show that the source
location problem can be solved in two steps, using first
a coarse-grain location of the fluorophore (e.g., from a
standard microscope fluorescence intensity image) de-
fining a domain of interest (DOI), and then using the life-
time to reconstruct the source location in the DOI.
Interestingly, the ill-posedness of this peculiar inverse
problem is reduced when the level of scattering in-
creases. This proof of principle might pave the way
toward novel approaches for lifetime imaging in complex
media [10]. In the active field of inverse problems in
scattering media, it also shows that reconstructions
can be improved by the use of signals that are very
sensitive to the local environment, e.g., due to near-
field interactions [11] or the quantum nature of the
emitters [12].
In the weak coupling regime, the spontaneous decay

rate of a fluorescent source located at position r0 is given
by Γ�r0;ω� � Γ0 � �2μ0ω2∕ℏ�jpegj2 Im�u ·Gs�r0; r0;ω�u�
[13], where Γ0 is the decay rate in free space, ω is the
emission frequency, peg is the transition dipole between
excited and ground states, and u � peg∕jpegj. In this
expression, the electrodynamic response of the environ-
ment is described by the scattered part of the Green func-
tion Gs, that connects a classical electric dipole source p
at r0 to the scattered field at position r through the rela-
tion Es�r;ω� � μ0ω2Gs�r; r0;ω�p. In this work, we give a
proof of principle in a simple two-dimensional (2D) geo-
metry under TE illumination (the source dipole and the
electric field are parallel to the invariance axis) so that
we are left with a scalar problem. The relative change
in the decay rate reads

Γ�r0;ω� − Γ0

Γ0
� 2μ0ω2jpegj2

ℏΓ0
Im�Gs�r0; r0;ω��: (1)

This quantity encodes the source position r0 � �x0; y0�
through the imaginary part of the scattered Green func-
tion Gs, or, equivalently, through the imaginary part of
the scattered field Es�r0;ω� [14].

To model a disordered scattering medium, we consider
M pointlike scatterers with polarizability α�ω� randomly
located at positions rj. Wave propagation and multiple
scattering in such a medium can be formulated in terms
of the so-called Foldy–Lax equations [15,16]:

Es�r;ω� � k2
X

j

G0�r; rj;ω�α�ω�Eexc�rj;ω�; (2)

Eexc�rj ;ω� � Einc�rj ;ω�
� k2

X

m≠j

G0�rj ; rm;ω�α�ω�Eexc�rm;ω�; (3)

where G0 is the scalar free-space Green function, and
k � ω∕c, with c the speed of light in vacuum. The sum-
mations are extended over the discrete set of scatterers.
Equation (2) gives the scattered field Es�r;ω� at point r in
terms of the exciting fields Eexc�rj ;ω� at each scatterer
position. Both the scattered and the exciting fields de-
pend on the position r0 of the fluorescent source and
the frequency ω (the dependence on r0 is not explicitly
shown for brevity). The self-consistent Eq. (3) gives
the exciting fields at each scatterer position, where
Einc�rj;ω� is the incident field radiated by the dipole
source placed at r0.

The 2D scatterers are described by a resonant polariz-
ability α�ω� � −�2γ∕k2��ω − ω0 � iγ∕2�−1, whereω0 is the
resonance frequency and γ is the linewidth. Different
multiple scattering regimes can be explored by adjusting
the detuning δ � ω − ω0, with δ ≪ ω0. As ameasure of the
scattering strength, we use 1∕�kℓs�, where ℓs � �ρσs�ω��−1
is the scattering mean free path, ρ is the density of scat-
terers, and σs�ω� � ω3∕�4c3�jα�ω�j2 is the scattering cross
section. In this work, we have chosen ω0 � 2 · 106 GHz
(λ0 � 0.94 μm), γ � 1 GHz, and δ � 1.0 − 2.3 GHz in
order to explore regimes corresponding to 1∕�kℓs� �
0.06 − 0.28.
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For a fluorescent point source placed at r0 inside the
scattering medium, the direct problem consists of solving
the M ×M linear system [Eq. (3)] for the exciting fields,
computing the scattered field at r0 using Eq. (2), and
deducing the change in the fluorescent decay rate (or,
equivalently, Im�Es�r0;ω��) from Eq. (1). In Fig. 1, we
show maps of Im�Es�r0;ω�� in one realization of the dis-
ordered medium, for different scattering strengths [from
left to right, 1∕�kℓs� � 0.28, 0.15, and 0.06]. The size of the
domain is 2 μm × 2 μm. The bottom row shows cross sec-
tions at x � 1.7 μm. The variation of Im�Es�r0;ω�� is lar-
ger for larger scattering strengths. Furthermore, the
variation is smoother, leading to a simpler resolution
of the inverse problem. Note that the oscillatory behavior
of Im�Es�r0;ω�� for smaller scattering strength increases
the ill-posedness of the inverse problem.
The inverse problem consists of finding the position of

the source r0 from the knowledge of its decay rate
d�ω� � Γ�r0;ω�, at different frequencies. In the inverse
source problem using d�ω� as data, we seek values of
the coordinates �x; y� that satisfy the nonlinear equations

Γ�x; y;ωi� � d�ωi� i � 1; 2;…. (4)

To solve this nonlinear problem with two unknowns, we
need data for at least two frequencies. Note that different
frequencies lead to different scattering strengths, and
thus correspond to different regimes of interaction be-
tween the fluorescent source and its environment. The
choice of a set of frequencies, for which the solution
of Eq. (4) gives the correct source location in a robust
way, is a key point. Without noise, two frequencies
may be sufficient if the spatial variation of Γ is large
and smooth enough. In the presence of noise, and/or
in a situation for which Γ is weakly dependent on posi-
tion (weak disorder), multifrequency data are needed. To
solve Eq. (4), different numerical approaches are avail-
able. Here we use an iterative gradient-based method.
Since this is a local method, convergence to the correct
solution is guaranteed only for a close enough initial
guess. The initial guess can be constrained by a priori
information. In the examples shown below, we define

a domain of interest (DOI) of size 1 μm × 1 μm around
the source. In the case of a dilute sample with statistically
less than one emitter per μm2, this DOI could be defined
from a diffraction-limited microscope image. Other meth-
ods having global convergence could be used, as, for ex-
ample, statistical search methods. Optimizing the inverse
method is not the goal of the present work, which is
devoted to a proof of principle. In particular, the sensi-
tivity of the inverse problem regarding the prior knowl-
edge of the number of scatterers will be examined in a
future work.

To demonstrate the feasibility of the inverse problem,
we have carried out numerical experiments. In Fig. 2, we
show reconstructions of the source position in the same
2 μm × 2 μm disordered medium as in Fig. 1, and in differ-
ent scattering regimes (the scattering strength decreases
from left to right). The top row shows the position of the
scatterers (dots), and the real (star) and reconstructed
(circle) source positions. The bottom row shows the cor-
responding residuals

P
ijΓ�x0; y;ωi� − d�ωi�j2 plotted

along the y direction. We have used data with two fre-
quencies, corrupted by an additive 8% Gaussian noise
[the two values of 1∕�kℓs� indicated in each case corre-
spond to the two frequencies used in the data]. For strong
scattering (left panel), the global minimum of the residual
is well defined. It is efficiently reached by the local gra-
dient method, and is also weakly dependent on noise. As
a consequence, the source location is found with preci-
sion. For weaker scattering (center panel), the minimum
of the residual is less well defined and, therefore, the so-
lution of the inverse problem gives rise to a less precise
source location. The situation is worse when the scatter-
ing strength decreases even more. In the right panel, we
observe that the oscillations of the residual lead to sev-
eral local minima of the residual that prevent a correct
source location.

Although not shown for brevity, increasing the number
of data (using more frequencies) improves the recon-
struction (with six frequencies, the localization is suc-
cessful in the three situations in Fig. 2). We stress that
the reconstruction is performed with a resolution that
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Fig. 1. (Color online) Top row: maps of Im�Es�r0;ω�� in one
realization of the disordered medium with 63 scatterers indi-
cated by dots. From left to right: 1∕�kℓs� � 0.28, 0.15, and
0.06 (ℓs � 0.5, 1, and 2.4 μm). Bottom row: cross sections at
x � 1.7 μm. Size of domain: 2 μm × 2 μm.
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Fig. 2. (Color online) Top row: reconstructions inside a 1 μm ×
1 μm DOI (black square) in the same disordered medium as in
Fig. 1, for three scattering strength regimes. Left: �kℓs�−1 �
0.22 − 0.28, �kℓs�−1 � 0.13 − 0.17, and �kℓs�−1 � 0.06 − 0.08.
Two-frequency data are used for the reconstruction. Bottom
row: residuals along the y directions.
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is not diffraction limited. Changes in the decay rate en-
code the source location on a scale limited by the spatial
variation of the local environment [4] (interparticle dis-
tance or spatial correlation length in a continuous disor-
der), offering the possibility of superresolution in a
medium structured at subwavelength scale.
The numerical results suggest that an increased scat-

tering strength 1∕�kℓs� should improve the feasibility of
the inverse source reconstruction. Indeed, as shown qua-
litatively in Fig. 1, the probability of getting two different
source positions generating identical values of the decay
rate Γ decreases for large 1∕�kℓs� (the broadening of the
statistical distribution of Γ in the presence of strong scat-
tering has been demonstrated previously [5–8]). It is use-
ful to investigate which values of 1∕�kℓs� lead to a better
robustness of the inversion procedure. To analyze this
issue quantitatively, we plot in Fig. 3 the statistics of
the number of solutions (ill-posedness) when r0 scans
the medium. We use data with two or more frequencies
within two ranges of scattering strength parameters
�kℓs�−1 � 0.20 − 0.25 (left panel) and �kℓs�−1 �
0.05 − 0.06 (right panel). In the absence of noise, one un-
ique solution exists and the reconstruction is perfectly
robust with two-frequency data, whatever the scattering

strength (top row in Fig. 3). With 8% of noise (middle row
in Fig. 3), the histograms show two or more solutions for
some source positions, and the problem is substantially
ill-posed. By using more frequencies (bottom row in
Fig. 3), we can get a much narrower distribution with
almost a unique solution, the result being always better
for a larger scattering strength.

In summary, we have shown that it is possible to solve
the source location problem for a fluorescent emitter in a
disordered scattering medium, using the fluorescence
lifetime as data and realistic a priori information. The
ill-posedness of the inverse problem is reduced in the
presence of strong scattering, in agreement with known
results on fluorescence lifetime statistics in multiple scat-
tering media. To the best of our knowledge, this is the
first proof of principle of an inverse source reconstruc-
tion from lifetime measurements that takes advantage of
disorder and multiple scattering.

This work was supported by the European Union (EU)
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Fig. 3. (Color online) Number of solutions with the same de-
cay rate as r0 scans the medium. Left column: �kℓs�−1 �
0.20 − 0.25. Right column: �kℓs�−1 � 0.05 − 0.06. Top row:
two-frequency data without noise. Middle row: two-frequency
data with 8% noise. Bottom row: six-frequency data with 8%
noise.
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