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Abstract – Radiation by elementary sources is a basic problem in wave physics. We show that the
time-domain energy flux radiated from electromagnetic and acoustic subwalength sources exhibits
remarkable features. In particular, a subtle trade-off between source emission and absorption
underlies the mechanism of radiation. This behavior should be observed for any kind of classical
waves, thus having broad potential implications. We discuss the implication for subwavelength
focusing by time reversal with active sources.
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Any textbook on wave physics or field theory contains
a chapter on radiation by elementary sources in homoge-
neous media [1]. Frequency-domain analyses of the radi-
ated fields and the associated energy fluxes are the most
widespread. In these approaches, the far-field energy flux
is usually defined as the contribution that survives time
averaging, corresponding to power that continuously leaks
away from the source. Conversely, radiated near fields
generate oscillating terms in the energy flux, that are
discarded in the time-averaging process. Time-domain
expressions of radiated fields are also common in the
context of electromagnetic radiation [2–5], including the
optical regime [6], and in acoustics [7–9]. Nevertheless,
time-domain expressions of the energy flux have been
given much less consideration. In the case of electromag-
netic waves, the time-domain energy flux radiated from
an electric dipole at rest may be found in some textbooks
(see ref. [4], for instance). Its expression is also at the core
of interesting studies of the time decay of classical oscil-
lating dipoles [10,11], but that do not describe the full
contribution of the near-field terms that is discussed in the
present study. In most textbooks, the discussion is limited
to harmonic oscillations and time averages, since the focus
is usually on far-field radiation [3,6]. In acoustics, although
time-domain expressions of the fields radiated by mono-
pole or dipole sources are widespread [7–9], we are not
aware of any discussion of the time-domain energy flux,
and in particular of its near-field and far-field components.
In this letter, we revisit the basic problem of radia-

tion by elementary subwavelength sources, from the point
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of view of emission and absorption of energy in the
time domain. Considering time-domain expressions of the
energy flux for the acoustic monopole and the electromag-
netic dipole, and analyzing carefully the energy balance,
we show that there is a subtle trade-off between emission
of energy and subsequent reabsorption by the source, the
difference between emission and reabsorption giving the
amount of energy that is irreversibly radiated to the far
field. This result reveals some important features of the
dynamic interchange of energy between a subwavelength
source and a wave field, that have not been discussed so
far, to the best of our knowledge. It also suggests a novel
point of view on near-field radiation. Since the conclu-
sions hold for both acoustic and electromagnetic waves
(with striking similarities), they underline a behavior that
should be found with any kind of classical waves, thus
having broad implications. We illustrate an implication in
the context of subwavelength focusing using time reversal
with active sources [12,13].
The propagation of electromagnetic waves generated by

a spatially localized source in an otherwise homogeneous
medium is described by the following equation [2,3]:

1

c2
∂2E

∂t2
(r, t)+∇×∇×E(r, t) = Sem(r, t), (1)

where E(r, t) is the electric field at point r and time
t, and c is the speed of light in the medium. The
source term Sem(r, t) is often written in the form
Sem(r, t) =−µ0 (∂/∂t)j(r, t), where j(r, t) is the electric
current density and µ0 the vacuum magnetic perme-
ability. The electromagnetic energy current is given by
the Poynting vector Π(r, t) =E(r, t)×H(r, t), where
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E(r, t) is the retarded solution of eq. (1) and H(r, t)
the associated magnetic field. The energy flux φem(R, t)
across a sphere with radius R centered at the origin is
φem(R, t) =

∫

sphereΠ(r, t) ·ud
2r, where u= r/|r|.

For acoustic waves in the linear regime, the acoustic
pressure field p(r, t) generated by a spatially localized
source in a homogeneous medium obeys [7,8]

1

c2
s

∂2p

∂t2
(r, t)−∇2p(r, t) = Sac(r, t), (2)

where cs is the acoustic velocity in the medium and
Sac(r, t) the source term. The acoustic energy current is
q(r, t) = p(r, t)v(r, t), p(r, t) being the retarded acoustic
pressure field solution of eq. (2) and v(r, t) the associ-
ated acoustic velocity field. The energy flux follows from
φac(R, t) =

∫

sphere q(r, t) ·ud
2r.

In this letter we study the radiation produced by sources
of size much smaller than the characteristic length scale
of the wave field, that will be denoted by “subwave-
length sources”. In the case of electromagnetic waves, we
use a point electric dipole model, with dipole moment
p(t) = f(t)p0, f(t) being the dimensionless time-domain
amplitude and p0 a time-independent vector accounting
for the source polarization. This model describes, e.g., a
dipole moment p(t) = qeL(t) corresponding to an oscillat-
ing charge qe with oscillation amplitude L(t) much smaller
than all other relevant characteristic lengths [3]. For a
dipole centered at r= 0, the electromagnetic source term
reads

Sem(r, t) =−µ0
d2p(t)

dt2
δ(r), (3)

where δ(r) is the three-dimensional Dirac delta function.
In the case of acoustic waves, we use a point mass source
model describing a radially oscillating sphere with radius
a(t) = a0+ ξ(t), in the limit of vanishingly small radius [8].
For a source centered at r= 0, the acoustic source term
reads

Sac(r, t) = ρ0 s0
d2ξ(t)

dt2
δ(r) (4)

where ρ0 is the mass density of the unperturbed homo-
geneous medium and s0 = 4πa20. For the sake of formal
similarity with the electromagnetic case, we will write
ξ(t) = f(t)ξ0 with ξ0 a time-independent length driving
the acoustic source strength.
The time-domain solutions of eqs. (1) and (2) with

the source terms given by eqs. (3) and (4) can be
found in textbooks on electromagnetic and acoustic waves
propagation [2–4,7,8]. From the field expressions, the
energy flux across a sphere with radius R can be deduced
after tedious but straightforward algebra. In the case of
electromagnetic waves, one obtains

φem(R, t) =
µ0 p20
6π c

{

1

2

( c

R

)3
[

df2

dt

]

+
1

2

( c

R

)2
[

d2f2

dt2

]

+
( c

R

)

[

d

dt

(

df

dt

)2
]

+

[

d2f

dt2

]2
}

. (5)

For acoustic waves, the explicit calculation of the energy
flux leads to

φac(R, t) =
ρ0 s20 ξ

2
0

4π cs

{

1

2

(cs
R

)

[

d

dt

(

df

dt

)2
]

+

[

d2f

dt2

]2
}

.

(6)

In eqs. (5) and (6) all terms within square brackets
[. . .] denote retarded values, and have to be evaluated at
time t−R/c (electromagnetic waves) or t−R/cs (acoustic
waves). Although their derivation is a rather simple
exercise, we will see that these expressions bring to
light fundamental aspects of the mechanism of radiation
by subwavelength sources that have not been discussed
so far.
From a qualitative point of view, the structure of eqs. (5)

and (6) deserves several comments. The far-field limit,
obtained for R→∞, leads in both cases to an energy flux
proportional to the square of the second derivative of the
source amplitude, in agreement with a well-established
result in classical wave theory [1]. For a monochromatic
source oscillating at a frequency ω, with f(t) = sin(ωt),
this far-field term is the only one that survives a time aver-
aging of eqs. (5) and (6). The far-field behavior is exten-
sively discussed in textbooks, both for monochromatic and
pulse sources. Nevertheless the time-domain electromag-
netic and acoustic energy fluxes contain additional near-
field terms whose amplitude depends on the distance R
to the source. The first near-field term scales as R−1 and
is identical in eqs. (5) and (6), except for a factor of two,
while additional terms scaling as R−2 and R−3 appear
only in the expression for the electromagnetic case. These
near-field contributions exhibit remarkable properties that
induce specific behaviors of the time-domain energy flux.
A first result is that the time-dependent amplitudes of the
near-field terms in eqs. (5) and (6) read as first-order deriv-
atives of functions that are positive (squares) and that
recover their initial values after a finite time interval (the
pulse duration, or the period for monochromatic excita-
tion). As a result, these amplitudes necessarily change sign
during their time evolution, meaning that the near-field
terms lead alternatively to outgoing or incoming contri-
butions to the energy flux. Conversely, the far-field term
only contributes to an outgoing energy flux. While this
seems to be a commonly accepted result in the harmonic
regime (for electromagnetic waves, it is known that the
Poynting vector in the near field changes sign during one
cycle of oscillation), the above result precisely demon-
strates that the change of sign in the near-field energy
flux also exists for a pulsed source with finite duration
(i.e., with an amplitude starting from zero and vanishing
after a finite time).
In order to study the behavior of the time-domain

energy flux on a quantitative basis, we need to specify the
source amplitude function f(t). In the present work, we
consider pulses with two requirements. First, f(t) has to be
of strictly finite duration (denoted as T in the following),
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source term f(t)

time t 0 Ttime t
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2f

dt2
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Fig. 1: Time evolution of the source amplitude f(t) (left)
and of its second derivative d2f(t)/dt2 (right). The latter
represents the time dependence of the far-field amplitude for
both electromagnetic and acoustic waves.

in order to define exactly a pulse onset (t= 0) and a
pulse end (t= T ). Second, f(t) and its time derivatives
have to vanish continuously to zero at t= 0 and t= T , in
order to avoid temporal singularities in the energy flux,
as made clear from eqs. (5) and (6). A broadband pulse
matching these two requirement is, for instance, f(t) =
exp[2T 2/(t(t−T ))] for t∈]0, T [ and f(t) = 0 otherwise.
The temporal shape of the source amplitude f(t) and the
shape of the associated far-field amplitude are shown in
fig. 1. For such a broadband pulse, the period is on the
order of the duration. More precisely, for the function
f(t) given above, the period is close to half the duration,
and the corresponding wavelength is λ= cT/2 (see fig. 1).
In this expression and in the following, for the sake of
brevity and since the velocities play the same role in the
electromagnetic and acoustic cases, both c and cs are
referred to as c.
The knowledge of f(t) and its derivatives allows us

to plot the time evolution of φem(R, t) and φac(R, t) for
different observation distances, covering the near-field, the
intermediate and the far-field regimes. We show in fig. 2
the time evolution of the energy flux in the electromagnetic
(top) and acoustic (bottom) situations, and for four
different distances. In the far field (R' λ), the energy
flux is always positive and describes the radiated energy
flowing irreversibly from the source. In the near field
(R( λ), a completely different behavior is observed. The
energy flux oscillates, and takes negative values on some
time intervals. This means that part of the energy that
has flowed outside the sphere of radius R at a given time
flows back into the sphere at subsequent times.
At this stage, energy conservation states that a negative

energy flux corresponds to an increase of energy stored
inside the sphere with radius R, or to reabsorption into
the source (or both). In order to quantitatively settle
this point, we introduce Ux(R, t) defined as the energy
stored outside the sphere with radius R at time t in the
electromagnetic or acoustic field (the subscript “x” stands
for em or ac). It reads:

Ux(R, t) =

∫

t

0
φx(R, t

′) dt′. (7)

The time evolution of Uem(R, t) is shown in fig. 3 for the
same distance regimes as in fig. 2. Although not shown
for the sake of brevity, the same behavior is observed
for acoustic waves. As expected from the changes in
sign of the energy flux, we see that Uem(R, t) is not
a monotonic function of time except in the far field.
This non-monotonic behavior of the time evolution of the
energy stored in the field can be characterized by split-
ting Ux(R, t) into Ux(R, t) =U∞x +∆Ux(R, t). The first
term U∞

x
=
∫

∞

0 φx(R, t) dt corresponds to the overall time-
averaged energy eventually radiated irreversibly through
the sphere of radius R to the far field, and is indepen-
dent of R. The second term describes the time variations
of the energy stored in the field beyond the distance R,
and either increases or decreases Ux(R, t) with respect to
the asymptotic value U∞

x
. This dynamic behavior is fully

described by the curves in fig. 3. One clearly sees that
at some time range, for R( λ, the energy stored outside
the sphere with radius R exceeds the final energy that
remains in the field after the source has been turned off
(t > T ). This proves that part of the energy of the field
has been reabsorbed by the source, which constitute the
main result of this work. This result, derived here using a
pulse of finite duration and finite energy, remains valid for
monochromatic and quasi-monochromatic waves. It shows
without ambiguity that a negative energy flux observed in
the near field corresponds to reabsorption by the source.
This conclusion puts forward new features of the near

field. Although it is known that on average, near-field
terms correspond to non-radiative energy [7,14,15], our
work shows that this non-radiative energy is dynami-
cally exchanged between the field and the source, at the
time scale of the main oscillation. This subtle dynamic
process is hidden in the first place when computations
are restricted to time-averaged values. We also stress that
a time-domain analysis reveals behaviors that cannot be
seen in the frequency domain. For example, in near-field
optics or acoustics, it is often stated that some informa-
tion is lost in the far field due to the loss of non-radiative
components that remain spatially localized close to the
sources (in the near-field zone). With a non-stationary
source, one could question what happens after the source
has been turned off. Is the field finally radiated into the
far field, and if so, where is the loss of information? Our
work provides an unexpected answer: in the near field,
some energy is constantly dynamically exchanged between
the field and the source, and eventually most of it is
absorbed by the source while only a small part is radi-
ated into the far field. The discussion has been limited in
this study to a subwavelength source emitting in a homo-
geneous medium, so that only near fields produced by the
source itself have been considered. A more general analysis
including near fields produced by scattering from subwave-
length objects (secondary sources) should also reveal inter-
esting dynamic behaviors. In particular, understanding, in
the time domain, the concept of non-radiative components
that appear in the frequency-domain angular spectrum
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Fig. 2: Time evolution of the electromagnetic and acoustic energy flux φem(R, t) (top row) and φac(R, t) (bottom row) for
four different distance regimes. Far-field regime R! λ, limit of the source free regime R= 2λ (2λ= cT in this particular case),
near-field regimes R<λ and R" λ. For R= 2λ, the insets show the sign inversion of the energy flux.
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Fig. 3: Time evolution of the electromagnetic energy Uem(R, t) stored outside the sphere of radius R at time t, for the same
distance regimes as in fig. 2. The inset shows the dip due to the sign inversion of the energy flux.

decomposition of scattered fields [16] would be another
step forward. This is left for future work.
It is interesting to have a look at the distance depen-

dence in the near field of the maximum value of the energy
stored in the field ∆Umax

x
(R) =max{∆Ux(R, t)}. Conserv-

ing only the dominant terms as R→ 0 in eqs. (5) and (6),
it is easy to show that ∆Umaxem (R)∼R

−3 and ∆Umaxac (R)∼
R−1. Therefore, for a quasi-point source model, the energy
transiently stored in the field becomes arbitrarily large at
short distance. In practice, the energy must be limited
somehow by the limitations on the source model itself.
Another peculiar behavior, observable only with broad-
band pulses of strictly finite duration, is that the energy
flux exhibits a slight sign inversion even at times t > T ,
i.e., after the source has become inactive (see the insets in
figs. 2 and 3). This sign inversion does therefore not corre-
spond to reabsorption in the source in this case, but to a
small part of the energy flowing back and forth through
the sphere of radius R. This “anomaly” becomes insignif-
icant (although not strictly zero) in the far field since it
is due to the contribution of terms in the energy flux that
decay as R−1 or faster.
To our knowledge, the near-field contributions in the

time-domain energy flux have been first discussed in
optics by Mandel [10], in the context of the decay rate

of a classical electric dipole in vacuum. The discussion
was constrained by the fact that for a freely decaying
atomic dipole, “the total field energy could not exceed the
maximum amount of energy of the dipole that ultimately
emerges by radiation” [10]. A major difference with the
present work is that Mandel’s approach considered the
time variation of the envelope of the emitted wave field,
but terms varying in time at the scale of the optical period
were discarded. In a more recent study, Schantz considered
the time variations of the energy flux emitted by a
decaying electric dipole keeping all time-dependent terms,
with an initial condition corresponding to an electrostatic
dipole [11]. He concluded that the eventually radiated
energy had to correspond to electrostatic energy initially
stored in the far field. Although it is out of the scope of this
letter to further discuss this unexpected and interesting
result, we point out that the situation studied by Schantz
is very different from that considered here. Indeed, we
considered as a fundamental assumption the case of a
medium initially free of energy, with a source amplitude
starting exactly from zero, and vanishing rigorously after
a finite time (as opposed to an initial non-zero static field).
The results presented in this letter were derived in

the case of electromagnetic and acoustic radiation, but
they certainly underline general behaviors that should be
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found for any classical subwavelength sources. Therefore,
the peculiar dynamics of the energy exchange between a
subwavelength source and the radiated field has poten-
tially broad implications. Here, we discuss one important
consequence in the context of subwavelength focusing by
time reversal. Experimental realizations of time-reversed
wave fields have been demonstrated both in acoustics
and electromagnetism, by use of closed 2D or 3D cavi-
ties [13,17,18]. When the field emitted by a point-like
source is time reversed in the source-free medium, refocus-
ing is limited by diffraction [17,19]. However, when both
the wave field and the source are time reversed, perfect
refocusing can be obtained [12,16]. Accordingly, experi-
ments in acoustics have demonstrated subwavelength refo-
cusing with an active time-reversed source [13], the focal
spot size being limited only by the finite size of the source
itself. Intuitively, the role of the time-reversed source is
seen as that of a sink, i.e., of an absorber of the incoming
time-reversed wave. Our work shows that the role of the
time-reversed source is more subtle, and that it necessarily
involves both absorption and emission of energy. Indeed,
the time-domain evolution of the field energy in a perfect
time-reversal experiment (with reversed field and source)
is directly given by the curves in fig. 3 read backwards.
Therefore, the energy in the field is transiently larger than
the energy carried by the time-reversed wave field, so that
in some time range, the sink actually behaves as a source.
The time-reversed source is both an absorber and an emit-
ter. The term “sink” therefore only makes sense when one
considers the overall energy balance, obtained after time
integration. Our work has two important consequences
for practical experiments. First, the focusing performances
cannot be discussed without considering the energy point
of view, in particular because for a sink of vanishingly
small size, the transient energy that has to be stored in the
field becomes arbitrarily large. Second, perfect subwave-
length refocusing (i.e., without energy scattered away
from the focal spot) cannot be achieved by use of a passive
subwavelength absorber, as efficient as it may be, since the
dynamic exchange of energy is a necessary condition for a
localized absorption of the full energy of the wave field.
In summary, from the study of time-domain expression

of the energy flux radiated by pulsed electromagnetic
and acoustic elementary sources, we have shown that
the non-radiative energy predominant in the near-field
is dynamically exchanged between the source and the
field. We have discussed implications for subwavelength
focusing and imaging. Since the results hold for both
electromagnetic and acoustic waves, we believe that they
underlie a universal process of radiation by any kind
of subwavelength sources, although demonstrated here

only for the acoustic monopole and the electromagnetic
dipole. In the case of electromagnetic waves emitted by
a single classical dipole emitter, a giant transient storage
of electromagnetic energy is necessary in order to radiate
a (much smaller part) in the far field. It would be
interesting to clarify the way quantum theory handles this
point in the computation of spontaneous emission by a
single atom.
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