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AQ1 Quantitative elastography techniques have recently been developed to estimate the shear modulus l
of soft tissues in vivo. In the case of isotropic and quasi-incompressible media, the Young’s modu-

lus E is close to 3l, which is not true in transverse anisotropic tissues such as muscles. In this letter,

the transverse isotropic model established for hexagonal crystals is revisited in the case of soft

solids. Relationships between elastic constants and Young’s moduli are derived and validated on

experimental data found in the literature. It is shown that 3l? � E? � 4l? and that E== cannot

only be determined from the measurements of l== and l\ VC 2011 Acoustical Society of America.
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I. INTRODUCTION

It is now well established that anisotropy plays a major

role in the mechanical properties of biological media such as

muscles,1 tendons,2,3 or bones.4 Linear elastic theory, first

developed for crystals,5 was applied for modeling the propa-

gation of ultrasonic waves in such media. First experimental

results were satisfactorily explained by assuming a trans-

verse isotropy around a specific axis of symmetry.1,3 Elastic

constants of the model were determined from the measure-

ment of speed VL of ultrasound (1–10 MHz) for longitudinal

waves propagating in various directions. In these studies,

shear elastic constants were neglected or assumed to be zero

due to the lack of measurement systems. Some years ago,

the transient elastography (TE) technique was applied to

measure the speed VS of low frequency (50–150 Hz) shear

waves propagating in soft tissues.6 Using this technique,

local elasticity of soft tissues was obtained from shear veloc-

ity measurements and a strong anisotropy was found for

shear waves propagating perpendicular or parallel to the

muscle fibers.7 Recently, the supersonic shear imaging (SSI)

technique8 was applied to the measurement of shear wave

speed in muscles and confirmed this strong anisotropy.9

Such experiments allow us to recover the components of the

elastic tensor determining the type of anisotropy.

Nevertheless elasticity is most commonly defined in

terms of Young’s modulus E. In an isotropic elastic soft

media (Poisson’s ratio m % 0.5), this parameter can be

deduced from the shear velocity measurements by the simple

relation E% 3l¼ 3qVS
2, where l is the shear modulus. In

transverse isotropic or hexagonal media, similarly to the

other components of the elastic tensor, two Young’s moduli

are defined. However, the relationship between the Young’s

modulus and the shear velocity is no more so simple. In this

paper, the mechanical behavior of transverse isotropic soft

tissues is investigated. Relations between components of the

stiffness tensor are established and used to interpret experi-

mental data found in the literature. Finally, the unusual

behavior of muscles and tendons, compared with that of hex-

agonal crystals, is also discussed.

II. ANALYSIS

The propagation of ultrasonic waves is governed by

the mechanical properties of the propagating medium.5

Measurements performed on muscles or tendons have

shown that the isotropic model, used for many other bio-

logical tissues, is not valid. The transverse isotropic model

developed for materials exhibiting at least a hexagonal or

an axial symmetry is more appropriated.1 Given the Carte-

sian coordinate (x1, x2, x3) with the x3-axis parallel to the

fibers, a muscle or a tendon is isotropic in the (x1, x2)

plane. In the linear elastic theory, mechanical properties

are described by the stiffness tensor cijkl or the compliance

tensor sijkl (i, j, k, l¼ 1–3). Using the Voigt’s notation,

they are represented by 6� 6 symmetric matrices cab or sab

(a, b¼ 1–6). For transverse isotropic media, the number of

independent elastic constants reduces to five: c11, c13, c33,

c44, and c66. Other elastic constants are related to these

coefficients or vanish,

c22 ¼ c11; c23 ¼ c13; c55 ¼ c44; c12 ¼ c11 � 2c66: (1)

The same features can be established for the components of

the compliance matrix sab, inverse of the stiffness matrix

cab.

Stiffness constants c11 and c33 can be determined from

the measurement of longitudinal ultrasound velocities in

directions perpendicular (VL1) and parallel (VL3) to the fiber

axis x3,

c11 ¼ q VL1ð Þ2; c33 ¼ q VL3ð Þ2; (2)

where q is the mass density. The constant c13 can be deduced

from the velocity of longitudinal waves propagating in a me-

ridian plane such as (x1, x3). Other constants can be obtained

with TE technique (Fig. 1) from the velocity (VS1 or VS3) of

shear waves propagating in a direction perpendicular to the
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fiber axis with a polarization oriented either parallel to the

fibers,

c44 ¼ q VS3ð Þ2; (3)

or perpendicular to the fibers,

c66 ¼ q VS1ð Þ2: (4)

Regarding SSI technique, as presented in Fig. 2, c44 is

deduced from the velocity of shear waves propagating along

the fiber axis and polarized in any direction perpendicular to

the fibers.

In the case of soft tissues, like muscle, the order of mag-

nitude of these constants is very different. Longitudinal

wave velocity measured at megahertz frequencies are in the

kilometer per second range. With q¼ 1100 kg=m3, values of

constants c11, c33, and c13 were on the order of 3 GPa.1 Con-

versely, shear velocities were found to be in 1–10 m=s

range.8 Then, values of constants c66 and c44 are on the order

of 100 kPa, i.e., more than four orders of magnitude lower

than the three other constants. These results obtained

recently by TE or SSI justifies the hypothesis made by

Levinson1 that the value of the shear constant c44 remains

equal to zero throughout the iterative process used to deter-

mine the elastic constants from the speed of ultrasound. This

author approximates the velocity equation by assuming that

c13 �
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33
p

. Moreover, Levinson notes that this initial

estimate meets terminal conditions of the optimization

algorithm. In the following, this relation is demonstrated and

a more general relation between elastic constants is estab-

lished, which is valid in the case of tendon where the shear

stiffness c66 cannot be neglected.3

Because the stored energy density of any material must

be positive, the stiffness matrix is constrained to be definite

positive.5 A transverse isotropic material requires the posi-

tivity of c44, c66, and

c2 ¼ c33 c11 � c66ð Þ � c2
13: (5)

Stability constrains imposed a limited range of variations for

elastic constants.10 In Fig. 3, bounds of allowable values of

c2
13 are plotted in the dimensionless diagram,

b ¼ 2c2
13

c11 þ c12ð Þ2
versus a ¼ c33

c11 þ c12

: (6)

For transverse isotropic materials the stability condition

[Eq. (5)] requires that 0 � b � a. Symbols correspond to var-

ious crystals (Be, BeO, ZnO, CdS, Ti) of hexagonal symme-

try and to soft solids like muscles and tendons. Crystal data

are close to the dotted curve b¼ 2(1� a)2 corresponding to

an isotropic material (c33¼ c11, c13¼ c12) of Poisson’s ratio

m¼ 1� a. With m¼ 0.5, a fluid or a soft solid, like isotropic

tissues, lies at the intersection with the line b¼ a. Represen-

tative points for muscles and tendons are far from the curve

of isotropy and border the upper limit of the diagram. This

representation exhibits the specific behavior of muscles and

tendons as compared with that of transverse isotropic solids

and soft isotropic tissues.

Since c2 vanishes for b¼ a, this quantity plays an impor-

tant role for characterizing the behavior of a soft material. It

intervenes in the Young’s modulus, defined as the ratio of

the loading stress to the corresponding strain. For a stress

parallel to the fiber axis, the Young’s modulus E==¼E33 is

equal to,
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FIG. 1. Schematics of the TE technique where a rod mounted on a vibrator

gives a low frequency pulse at the surface of the medium generating shear

waves. (a) When the rod is perpendicular to the fibers axis, a shear wave

propagates (~k) perpendicularly to the fibers axis with a polarization (~u) par-

allel to the fibers axis. (b) When the rod is parallel to the fibers axis, a shear

wave propagates (~k) perpendicularly to the fibers axis with a polarization (~u)

perpendicular to the fibers axis. Such configurations give, respectively,

access to the elastic constants c44 and c66.

FIG. 2. Schematics of the SSI technique where a radiation force perpendic-

ular to the fibers axis generates shear waves. (a) When the ultrasonic probe

is parallel to the fibers axis, a shear wave propagates (~k) parallel to the fibers

axis with a polarization (~u) perpendicular to the fibers axis. (b) When the ul-

trasonic probe is perpendicular to the fibers axis, a shear wave propagates

(~k) perpendicularly to the fibers axis with a polarization (~u) perpendicular to

the fibers axis. Such configurations give, respectively, access to the elastic

constants c44 and c66.

FIG. 3. (Color online) Bounds of allowable values of c2
13 and data plotted

for a variety of transverse isotropic crystals: Be (4), BeO (~), Ti (h), ZnO

(�), CdS (n), muscle (?), and tendon (^). a and b are defined from Eq. (6).

The dotted curve is for an isotropic medium of Poisson’s ratio m¼ 1� a.
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E== ¼
1

s33

¼ c2

c11 � c66

: (7)

For a stress perpendicular to the fiber axis, the Young’s mod-

ulus E\¼E11¼E22 is given by

E? ¼
1

s11

¼ 4c66c2

c2 þ c33c66

: (8)

As pointed out by Hoffmeister, Eqs. (7) and (8) show that

parallel and perpendicular Young’s modulus do not depend

on c44, while variations in c66 produce changes in Young’s

modulus at all angles with respect to the fiber axis.2

Experimental values of E== are less than 100 kPa for

muscle and less than 1 MPa for tendon.3 From Eq. (7), the

quantity c2 ¼ E==ðc11 � c66Þ is of the order of 10�3 (GPa)2,

i.e., three orders of magnitude lower than each term of the

difference in Eq. (5). Then, the equality,

c13 ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c33 c11 � c66ð Þ

p
; (9)

is valid with an error less than 0.1%. The determination of

c13 requires measurements of the phase velocity of longitudi-

nal waves propagating in any direction in a meridian plane

such as (x1, x3). Equation (9) allows us to calculate c13 with

stiffness constants deduced from sound velocity measure-

ments only in directions parallel and perpendicular to the

fiber axis. We have used results found in the literature for

fresh bovine Achilles tendons to check the validity of Eq.

(9). The first four columns in Table I list the mean values of

stiffness constants obtained by Kuo et al. at three strain con-

ditions, 0%, 4.7%, and 9.5%.3 The last column shows that

the values of the constant c13 deduced from Eq. (9) are very

close to the experimental ones.

Recently, experiments performed in vivo with the SSI

technique show that shear wave velocities perpendicular to

the fiber axis of skeletal muscles are of the order of 10 m=s.9

Then, the corresponding elastic constants c66 and c44 are less

than 100 kPa and Eq. (9) can be written in a form identical

to that postulated by Levinson,

c13 ffi
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33

p
: (10)

We have used the experimental results obtained by this

author to check the validity of this formula. In Table II, the

first three columns list the mean values of stiffness constants

obtained for the first specimen in both passive and active

phase.1 The last column shows that the values of the constant

c13 deduced from Eq. (10) are very close to the experimental

ones. The agreement for other specimens is also very

satisfactory.

The main objective of elastographic technique is to esti-

mate the Young’s modulus E of soft tissues through meas-

urements of the shear wave velocity VS. For an isotropic

elastic media, this parameter is linked to the Lamé constants

k and l,

E ¼ lð3kþ 2lÞ
kþ l

: (11)

In soft media, k is 105 times larger than l. Thus such me-

dium are considered as quasi-incompressible and the very

good approximation,

E ffi 3l ¼ 3qV2
S ; (12)

allows us to determine accurately the elasticity from shear

wave velocity measurements.6

The elasticity of transverse isotropic media is described

by the two Young’s modulus E== and E\ according to the

direction of the applied stress with respect to the fiber axis.

Combining Eqs. (7) and (8) leads to

E? ¼
4c66

E==
þ cc66E==; (13)

where the coefficient,

c ¼ c33

c11 � c66

¼ 2a; (14)

is equal to unity for a soft isotropic medium (c11 = c33

�c c66). In this case, E==¼E\¼E and Eq. (13) gives

E¼ 3c66¼ 3l, as expected. For transverse isotropic media

such as tendons or muscles, c33 is larger than c11. However,

values of stiffness constants in Tables I and II and data in

Fig. 3 show that c¼ 2a does not exceed 2. Thus, the perpen-

dicular Young’s modulus lies in between 3c66 and 4c66. The

lower limit corresponds to the isotropic case. The upper limit

corresponds to a transverse isotropic soft medium having a

longitudinal elasticity E== much larger than the shear elastic-

ity measured by the coefficient c66¼l\,

3l? � E? � 4l?: (15)

This approximation is valid for muscles, for which E==
% 100 kPa and c66 � 10 kPa, with VS1 in between 1 and 3

m=s, as measured by Gennisson et al.9 Thus the measure-

ment of the shear elastic constant c66 provides a good
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Table 1. Comparison between mean values of stiffness constant c13 meas-

ured (Ref. 3) and calculated from Eq. (9) (GPa) for bovine Achilles tendons

at three strain conditions.

Strain c11 c33 c66 c13 (meas.) c13 [Eq. (9)]

0% 2.93 3.90 0.61 3.00 3.01

4.7% 2.91 3.59 0.25 3.08 3.09

9.5% 2.89 3.32 0.26 2.96 2.95

Table 2. Comparison between average values (GPa) of stiffness constant

c13 measured (Ref. 1) and calculated from Eq. (10) for a frog sartorius mus-

cle in the passive and active phases.

Phase c11 c33 c13 (meas.) c13 [Eq. (10)]

Active 2.60 4.17 3.29 3.29

Passive 2.60 4.46 3.40 3.41
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approximation of the Young’s modulus in the direction per-

pendicular to the fiber axis.

As pointed out by Hoffmeister, the Young’s modulus

E== cannot be estimated from the shear elastic constant c44.

Equation (7) shows that E== is proportional to c2. For a soft

transverse isotropic media, we have shown that this quantity

is the difference of two terms, c33 c11 � c66ð Þ and c2
13, that

nearly compensate. Taking into account the accuracy of ul-

trasonic techniques, the relative error on the value of c2 is

very large and the estimation of the Young’s modulus paral-

lel to the fiber failed. This remark explains the discrepancy

observed by Kuo et al. between the experimental and

the estimated values of E==. For the unstrained tendon (S0),

the measured Young’s modulus is one order of magnitude

larger than that estimated from elastic constants. This ratio is

only twice for the sample with an initial strain state at 9.5%.

At a higher strain the tendon becomes harder and the quan-

tity c2 increases significantly. Thus, the estimation of the

Young’s modulus becomes more accurate, as noted by

Kuo et al.

III. DISCUSSION

In this paper, relationships are derived from theoretical

considerations and experimental results obtained by TE or

SSI techniques applied to transverse isotropic soft tissues.

Relationships [Eqs. (9) and (10)] between elastic constants

c11, c13, c33, and c66 were verified on data reported in the lit-

erature for muscles and tendons. Moreover, it is shown that

the well-known approximation E % 3l¼ 3qVS
2 is no more

valid in the case of transverse isotropic soft tissues. In that

way, such medium in TE or SSI techniques must be prefer-

entially defined in terms of shear velocities than in terms of

Young’s moduli.

A representation in the stability diagram of transverse

isotropic media shows that the mechanical behavior of

muscles and tendons is very different from that of hexagonal

crystals and also from that of isotropic tissues. One reason of

this unusual behavior of transverse isotropic tissues is the

difference of anisotropy according to the type of elastic

waves. Regarding the speed of ultrasound wave, the ratio of

anisotropy is quite close to unity for longitudinal waves. The

anisotropy of soft tissues is mainly related to the shear pa-

rameters governing the speed of slow transverse waves. This

explains why the anisotropy was not very well studied in the

last decades in ultrasonography. Moreover, expressions of

the Young’s modulus were derived from the relationship on

components of the elastic tensor. Young’s modulus perpen-

dicular to the fiber axis was found to be in between 3c66 and

4c66. Thus, this parameter can be estimated from the mea-

surement of the speed of the shear wave perpendicular to the

axis of symmetry. Conversely, Young’s modulus parallel to

the fiber axis cannot be expressed in terms of shear wave

speed. Moreover the estimation of E== from stiffness con-

stants determined by ultrasonic measurements is very uncer-

tain. Under these conditions, the level of anisotropy defined

by the ratio of the shear velocities is a quite good interpreta-

tion and Young’s moduli are not pertinent parameters. For

example, when a muscle is contracting, everybody feels an

increase of stiffness. However, as pointed out in Refs. 9 and

11, the shear modulus parallel to the fibers axis (c44)

increases much stronger than the shear modulus perpendicu-

lar to the fibers axis (c66) with the muscle contraction. The

relationship between parallel Young’s modulus and trans-

verse stiffness (c66) commonly felt by physicians during pal-

pation remains an open question.
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