AQt

J_ID: JAS DOI: 10.1121/1.3559681 Date: 17-March-11 Stage: Page: 1

Total Pages: 5

On the elasticity of transverse isotropic soft tissues (L)
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Quantitative elastography techniques have recently been developed to estimate the shear modulus u
of soft tissues in vivo. In the case of isotropic and quasi-incompressible media, the Young’s modu-
lus E is close to 3u, which is not true in transverse anisotropic tissues such as muscles. In this letter,
the transverse isotropic model established for hexagonal crystals is revisited in the case of soft
solids. Relationships between elastic constants and Young’s moduli are derived and validated on
experimental data found in the literature. It is shown that 3y < E, < 4pu, and that £,, cannot
only be determined from the measurements of u,, and p, © 2011 Acoustical Society of America.
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. INTRODUCTION

It is now well established that anisotropy plays a major
role in the mechanical properties of biological media such as
muscles,1 tendons,z’3 or bones.* Linear elastic theory, first
developed for crystals,” was applied for modeling the propa-
gation of ultrasonic waves in such media. First experimental
results were satisfactorily explained by assuming a trans-
verse isotropy around a specific axis of symmetry.'* Elastic
constants of the model were determined from the measure-
ment of speed V, of ultrasound (1-10 MHz) for longitudinal
waves propagating in various directions. In these studies,
shear elastic constants were neglected or assumed to be zero
due to the lack of measurement systems. Some years ago,
the transient elastography (TE) technique was applied to
measure the speed Vg of low frequency (50-150 Hz) shear
waves propagating in soft tissues.® Using this technique,
local elasticity of soft tissues was obtained from shear veloc-
ity measurements and a strong anisotropy was found for
shear waves propagating perpendicular or parallel to the
muscle fibers.” Recently, the supersonic shear imaging (SSI)
technique® was applied to the measurement of shear wave
speed in muscles and confirmed this strong anisotropy.’
Such experiments allow us to recover the components of the
elastic tensor determining the type of anisotropy.

Nevertheless elasticity is most commonly defined in
terms of Young’s modulus E. In an isotropic elastic soft
media (Poisson’s ratio v = 0.5), this parameter can be
deduced from the shear velocity measurements by the simple
relation E = 3u=3pVs>, where p is the shear modulus. In
transverse isotropic or hexagonal media, similarly to the
other components of the elastic tensor, two Young’s moduli
are defined. However, the relationship between the Young’s
modulus and the shear velocity is no more so simple. In this
paper, the mechanical behavior of transverse isotropic soft
tissues is investigated. Relations between components of the
stiffness tensor are established and used to interpret experi-
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mental data found in the literature. Finally, the unusual
behavior of muscles and tendons, compared with that of hex-
agonal crystals, is also discussed.

Il. ANALYSIS

The propagation of ultrasonic waves is governed by
the mechanical properties of the propagating medium.’
Measurements performed on muscles or tendons have
shown that the isotropic model, used for many other bio-
logical tissues, is not valid. The transverse isotropic model
developed for materials exhibiting at least a hexagonal or
an axial symmetry is more appropriated.' Given the Carte-
sian coordinate (x;, x,, x3) with the xs-axis parallel to the
fibers, a muscle or a tendon is isotropic in the (xy, x;)
plane. In the linear elastic theory, mechanical properties
are described by the stiffness tensor c;;; or the compliance
tensor s,y (i, j, k, [=1-3). Using the Voigt’s notation,
they are represented by 6 X 6 symmetric matrices c,g Or S,
(o, f=1-6). For transverse isotropic media, the number of
independent elastic constants reduces to five: ¢y, ¢13, €33,
C44, and cge. Other elastic constants are related to these
coefficients or vanish,

€22 = C11,€23 = C[3,C55 = C44,C12 = C1] — 2Cé6. (D

The same features can be established for the components of
the compliance matrix s,4, inverse of the stiffness matrix
Cop-

Stiffness constants ¢;; and ¢33 can be determined from
the measurement of longitudinal ultrasound velocities in
directions perpendicular (V) and parallel (V;3) to the fiber
axis xs,

e =p(Vir)*, e = p(Via)?, )

where p is the mass density. The constant ¢;; can be deduced
from the velocity of longitudinal waves propagating in a me-
ridian plane such as (x, x3). Other constants can be obtained
with TE technique (Fig. 1) from the velocity (Vg; or Vg3) of
shear waves propagating in a direction perpendicular to the
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FIG. 1. Schematics of the TE technique where a rod mounted on a vibrator
gives a low frequency pulse at the surface of the medium generating shear
waves. (a) When the rod is perpendicular to the fibers axis, a shear wave
propagates *) perpendicularly to the fibers axis with a polarization (i) par-
allel to the fibers axis. (b) When the rod is parallel to the fibers axis, a shear
wave propagates ) perpendicularly to the fibers axis with a polarization (ir)
perpendicular to the fibers axis. Such configurations give, respectively,
access to the elastic constants c¢44 and cgg.

fiber axis with a polarization oriented either parallel to the
fibers,

cas = p(Vs3)?, (3)

or perpendicular to the fibers,

ces = p(Vs1)’. 4)

Regarding SSI technique, as presented in Fig. 2, c44 is
deduced from the velocity of shear waves propagating along
the fiber axis and polarized in any direction perpendicular to
the fibers.

In the case of soft tissues, like muscle, the order of mag-
nitude of these constants is very different. Longitudinal
wave velocity measured at megahertz frequencies are in the
kilometer per second range. With p = 1100 kg/ m?, values of
constants ¢y, ¢33, and ¢;3 were on the order of 3 GPa.! Con-
versely, shear velocities were found to be in 1-10 m/s
range.8 Then, values of constants cgg and c44 are on the order
of 100 kPa, i.e., more than four orders of magnitude lower
than the three other constants. These results obtained
recently by TE or SSI justifies the hypothesis made by
Levinson' that the value of the shear constant ¢,y remains
equal to zero throughout the iterative process used to deter-
mine the elastic constants from the speed of ultrasound. This
author approximates the velocity equation by assuming that
c13 & y/c11¢33. Moreover, Levinson notes that this initial
estimate meets terminal conditions of the optimization
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FIG. 2. Schematics of the SSI technique where a radiation force perpendic-
ular to the fibers axis generates shear waves. (a) When the ultrasonic probe
is parallel to the fibers axis, a shear wave propagates ® parallel to the fibers
axis with a polarization (i) perpendicular to the fibers axis. (b) When the ul-
trasonic probe is perpendicular to the fibers axis, a shear wave propagates
(l:) perpendicularly to the fibers axis with a polarization (if) perpendicular to
the fibers axis. Such configurations give, respectively, access to the elastic
constants c44 and cge.
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algorithm. In the following, this relation is demonstrated and
a more general relation between elastic constants is estab-
lished, which is valid in the case of tendon where the shear
stiffness cgg cannot be neglected.3

Because the stored energy density of any material must
be positive, the stiffness matrix is constrained to be definite
positive.” A transverse isotropic material requires the posi-
tiVity of ¢44, Co6, and

2 2
c” =c33(cn — ce6) — €13 &)

Stability constrains imposed a limited range of variations for
elastic constants.'® In Fig. 3, bounds of allowable values of
¢}, are plotted in the dimensionless diagram,

2
2C13 C33
b=——"5 versusa=—-—.
(c11 + c12) ci1 +c2

(6)

For transverse isotropic materials the stability condition
[Eq. (5)] requires that 0 < b < a. Symbols correspond to var-
ious crystals (Be, BeO, ZnO, CdS, Ti) of hexagonal symme-
try and to soft solids like muscles and tendons. Crystal data
are close to the dotted curve b =2(1 —a)* corresponding to
an isotropic material (¢33 =cy1, ¢13 =c12) of Poisson’s ratio
v=1—a. With v=0.5, a fluid or a soft solid, like isotropic
tissues, lies at the intersection with the line b = a. Represen-
tative points for muscles and tendons are far from the curve
of isotropy and border the upper limit of the diagram. This
representation exhibits the specific behavior of muscles and
tendons as compared with that of transverse isotropic solids
and soft isotropic tissues.

Since ¢? vanishes for b = a, this quantity plays an impor-
tant role for characterizing the behavior of a soft material. It
intervenes in the Young’s modulus, defined as the ratio of
the loading stress to the corresponding strain. For a stress
parallel to the fiber axis, the Young’s modulus E,, = E33 is
equal to,
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FIG. 3. (Color online) Bounds of allowable values of c% and data plotted
for a variety of transverse isotropic crystals: Be (A), BeO (A), Ti ((J), ZnO
(o), CdS (M), muscle (*), and tendon (@ ). @ and b are defined from Eq. (6).
The dotted curve is for an isotropic medium of Poisson’s ratio v=1—a.
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For a stress perpendicular to the fiber axis, the Young’s mod-

ulus EJ_ :Ell :E22 is given by

1 466662
EJ_ = — = 27 .
Si1 €7+ C33C66

®)

As pointed out by Hoffmeister, Egs. (7) and (8) show that
parallel and perpendicular Young’s modulus do not depend
on cy44, While variations in cgg produce changes in Young’s
modulus at all angles with respect to the fiber axis.”

Experimental values of E/,, are less than 100 kPa for
muscle and less than 1 MPa for tendon.®> From Eq. (7), the
quantity ¢? = E//(cn — ¢g6) is of the order of 10~ (GPa)?,
i.e., three orders of magnitude lower than each term of the
difference in Eq. (5). Then, the equality,

c13 2 ez — Ces)s 9

is valid with an error less than 0.1%. The determination of
c13 requires measurements of the phase velocity of longitudi-
nal waves propagating in any direction in a meridian plane
such as (xy, x3). Equation (9) allows us to calculate c;3 with
stiffness constants deduced from sound velocity measure-
ments only in directions parallel and perpendicular to the
fiber axis. We have used results found in the literature for
fresh bovine Achilles tendons to check the validity of Eq.
(9). The first four columns in Table I list the mean values of
stiffness constants obtained by Kuo et al. at three strain con-
ditions, 0%, 4.7%, and 9.5%.% The last column shows that
the values of the constant c;; deduced from Eq. (9) are very
close to the experimental ones.

Recently, experiments performed in vivo with the SSI
technique show that shear wave velocities perpendicular to
the fiber axis of skeletal muscles are of the order of 10 m/s.’
Then, the corresponding elastic constants cgg and c44 are less
than 100 kPa and Eq. (9) can be written in a form identical
to that postulated by Levinson,

€13 =4 /C11633. (10)
We have used the experimental results obtained by this
author to check the validity of this formula. In Table II, the
first three columns list the mean values of stiffness constants
obtained for the first specimen in both passive and active
phase." The last column shows that the values of the constant
c13 deduced from Eq. (10) are very close to the experimental

Table 1. Comparison between mean values of stiffness constant ¢;;3 meas-
ured (Ref. 3) and calculated from Eq. (9) (GPa) for bovine Achilles tendons
at three strain conditions.

Strain cry 33 Ce6 c13 (meas.) c13 [Eq. (9)]
0% 2.93 3.90 0.61 3.00 3.01
4.7% 291 3.59 0.25 3.08 3.09
9.5% 2.89 332 0.26 2.96 2.95
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Table 2. Comparison between average values (GPa) of stiffness constant
cy3 measured (Ref. 1) and calculated from Eq. (10) for a frog sartorius mus-
cle in the passive and active phases.

Phase c1y €33 c13 (meas.) c13 [Eq. (10)]
Active 2.60 4.17 3.29 3.29
Passive 2.60 4.46 3.40 341

ones. The agreement for other specimens is also very
satisfactory.

The main objective of elastographic technique is to esti-
mate the Young’s modulus E of soft tissues through meas-
urements of the shear wave velocity V. For an isotropic
elastic media, this parameter is linked to the Lamé constants
Aand u,

34+2
E_ u(34+ .U). an
A+
In soft media, / is 10° times larger than y. Thus such me-
dium are considered as quasi-incompressible and the very
good approximation,

E~3u=3pV;, (12)

allows us to determine accurately the elasticity from shear
wave velocity measurements.°

The elasticity of transverse isotropic media is described
by the two Young’s modulus £,, and E according to the
direction of the applied stress with respect to the fiber axis.
Combining Egs. (7) and (8) leads to

4C66
E, =——+vcesE /), (13)
Ey

where the coefficient,

=2 =2a, (14)
C11 — Ce6

is equal to unity for a soft isotropic medium (c;; = ¢33
>7ce6). In this case, E,;)=FE, =F and Eq. (13) gives
E =3cee =31, as expected. For transverse isotropic media
such as tendons or muscles, c33 is larger than c;;. However,
values of stiffness constants in Tables I and II and data in
Fig. 3 show that y =2a does not exceed 2. Thus, the perpen-
dicular Young’s modulus lies in between 3cgq and 4cgg. The
lower limit corresponds to the isotropic case. The upper limit
corresponds to a transverse isotropic soft medium having a
longitudinal elasticity £,, much larger than the shear elastic-
ity measured by the coefficient cgq = 1,

3, <EQ <Ap. (15)

This approximation is valid for muscles, for which E/,
=~ 100 kPa and cg¢ < 10 kPa, with Vg in between 1 and 3
m/s, as measured by Gennisson e al.” Thus the measure-
ment of the shear elastic constant cgs provides a good
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approximation of the Young’s modulus in the direction per-
pendicular to the fiber axis.

As pointed out by Hoffmeister, the Young’s modulus
E/, cannot be estimated from the shear elastic constant c4.
Equation (7) shows that E,, is proportional to 2. For a soft
transverse isotropic media, we have shown that this quantity
is the difference of two terms, c33(c11 — ce6) and ¢35, that
nearly compensate. Taking into account the accuracy of ul-
trasonic techniques, the relative error on the value of 2 is
very large and the estimation of the Young’s modulus paral-
lel to the fiber failed. This remark explains the discrepancy
observed by Kuo et al. between the experimental and
the estimated values of E,. For the unstrained tendon (Sy),
the measured Young’s modulus is one order of magnitude
larger than that estimated from elastic constants. This ratio is
only twice for the sample with an initial strain state at 9.5%.
At a higher strain the tendon becomes harder and the quan-
tity ¢* increases significantly. Thus, the estimation of the
Young’s modulus becomes more accurate, as noted by
Kuo et al.

lll. DISCUSSION

In this paper, relationships are derived from theoretical
considerations and experimental results obtained by TE or
SSI techniques applied to transverse isotropic soft tissues.
Relationships [Egs. (9) and (10)] between elastic constants
C11, C13, C33, and cgg Were verified on data reported in the lit-
erature for muscles and tendons. Moreover, it is shown that
the well-known approximation £ = 3u=23pVs> is no more
valid in the case of transverse isotropic soft tissues. In that
way, such medium in TE or SSI techniques must be prefer-
entially defined in terms of shear velocities than in terms of
Young’s moduli.

A representation in the stability diagram of transverse
isotropic media shows that the mechanical behavior of
muscles and tendons is very different from that of hexagonal
crystals and also from that of isotropic tissues. One reason of
this unusual behavior of transverse isotropic tissues is the
difference of anisotropy according to the type of elastic
waves. Regarding the speed of ultrasound wave, the ratio of
anisotropy is quite close to unity for longitudinal waves. The
anisotropy of soft tissues is mainly related to the shear pa-
rameters governing the speed of slow transverse waves. This
explains why the anisotropy was not very well studied in the
last decades in ultrasonography. Moreover, expressions of
the Young’s modulus were derived from the relationship on
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components of the elastic tensor. Young’s modulus perpen-
dicular to the fiber axis was found to be in between 3c¢gq and
4cg6. Thus, this parameter can be estimated from the mea-
surement of the speed of the shear wave perpendicular to the
axis of symmetry. Conversely, Young’s modulus parallel to
the fiber axis cannot be expressed in terms of shear wave
speed. Moreover the estimation of E,, from stiffness con-
stants determined by ultrasonic measurements is very uncer-
tain. Under these conditions, the level of anisotropy defined
by the ratio of the shear velocities is a quite good interpreta-
tion and Young’s moduli are not pertinent parameters. For
example, when a muscle is contracting, everybody feels an
increase of stiffness. However, as pointed out in Refs. 9 and
11, the shear modulus parallel to the fibers axis (c44)
increases much stronger than the shear modulus perpendicu-
lar to the fibers axis (cgg) With the muscle contraction. The
relationship between parallel Young’s modulus and trans-
verse stiffness (cgs) commonly felt by physicians during pal-
pation remains an open question.

'S. F. Levinson, “Ultrasound propagation in anisotropic soft tissues: The
application of linear elastic theory,” J. Biomech. 20(3), 251-260 (1987).

’B. K. Hoffmeister, S. M. Handley, S. A. Wickline, and J. G. Miller,
“Ultrasonic determination of the anisotropy of Young’s modulus of fixed
tendon and fixed myocardium,” J. Acoust. Soc. Am. 100(6), 3933-3940
(1996).

3P. L. Kuo, P. C. Li, and M. L. Li, “Elastic properties of tendon measured by
two different approaches,” Ultrasound Med. Biol. 27(9), 1275-1284 (2001).

“H. S. Yoon and J. L. Katz, “Ultrasonic wave propagation in human corti-
cal bone. I. Theoretical considerations for hexagonal symmetry,” J. Bio-
mech. 9, 407-412 (1976).

°D. Royer and E. Dieulesaint, Elastic Waves in Solids. I. Free and Guided
Propagation (Springer, Berlin, 1999), Chap. 4.

SL. Sandrin, M. Tanter, J. L. Gennisson, S. Catheline, and M. Fink, “Shear
elasticity probe for soft tissue with 1D transient elastography,” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 49(4), 436-446 (2002).

1. L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, “Transient elastog-
raphy in anisotropic medium: Application to the measurement of slow and
fast shear waves velocities in muscles,” J. Acoust. Soc. Am. 114(1), 536—
541 (2003).

8). Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: A new
technique for soft tissues elasticity mapping,” IEEE Trans. Ultrason. Fer-
roelectr. Freq. Control 51(4), 396409 (2004).

°J. L. Gennisson, T. Deffieux, E. Macé, G. Montaldo, M. Fink, and M. Tan-
ter, “Viscoelastic and anisotropic mechanical properties of in vivo muscle
tissue assessed by Supersonic Shear Imaging,” Ultrasound Med. Biol.
36(5), 789-801 (2010).

1A, Ballato, “Poisson’s ratio of auxetic and other technological materials,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 7-15 (2010).

g, Levinson, S. Catheline, and M. Fink, “Anisotropy elasticity and viscos-
ity deduced from supersonic shear imaging in muscle,” in International
Society of Biomechanics, XXth Congress, 29th Annual Meeting of the
American Society of Biomechanics, Cleveland, OH (2005), p. 101.

Royer et al.: Letters to the Editor

ID: 3b2server Time: 12:25 | Path: //xinchnasjn/AIP/3b2/JAS#/\VOL00000/110099/APPFile/Al-JAS#110099



AQI1: Letters to the Editor are restricted to 4 pages. Note the changes made to your paper so that it fits the 4-page limit.



	s1
	s2
	E1
	E2
	cor1
	E3
	E4
	E5
	E6
	E7
	F1
	F2
	F3
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	E15
	T1
	T2
	s3
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11



