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Spontaneous decay rate of a dipole emitter in a strongly scattering disordered environment
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We study the statistics of the fluorescence decay rate of a dipole emitter embedded in a strongly scattering
medium. In the multiple-scattering regime, the probability of observing a decrease in the decay rate is substantial,
as predicted by exact numerical simulations. The decrease originates from a reduction of the local density of
optical states and is due to collective interactions and interferences. In the strong-scattering regime, signatures
of recurrent scattering are visible in the behavior of the average decay rate.
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I. INTRODUCTION

Optics in disordered media is a field of growing interest,
stimulated by the development of imaging techniques in
turbid media [1], by the possibility of studying fundamental
questions in mesoscopic physics using optical waves [2], and
by the emergence of randomly structured photonic materials
with unconventional properties [3–5]. The local density of
optical states (LDOS) is a fundamental quantity that drives the
spontaneous emission of light as well as macroscopic transport
properties [6–10]. LDOS fluctuations are also connected to
intensity correlations in speckle patterns through the so-called
C0 correlation [11]. Understanding the (statistical) behavior
of the LDOS in disordered systems is important; for example,
to engineer photonic materials controlling light emission and
propagation by multiple scattering [3–5,8,10], or to improve
fluorescence lifetime imaging techniques [12].

In this paper, we study the spontaneous decay rate � of
a dipole emitter (e.g., an atom, molecule, or quantum dot)
considered as a probe of the LDOS in a three-dimensional
(3D) disordered cluster of localized scatterers. The decay-rate
distributions in the single-scattering regime were studied pre-
viously [13,14], and the fluctuations were explained in terms
of near-field dipole-dipole interactions. Here, we compute
the statistical distribution P (�), using exact 3D numerical
simulations, in the (strong) multiple-scattering regime. We
show that the distributions are much broader and exhibit a
different line shape. In particular, we show that the probability
of observing decay rates smaller than the free-space decay rate
�0 is substantial. This corresponds to inhibition of spontaneous
emission (reduction of the LDOS) by multiple scattering.

II. THEORETICAL MODEL

We consider a 3D cluster of N resonant point scatterers
randomly distributed inside a sphere with radius R, with a
dipole emitter located at the center (position r0). The geometry
is shown in the inset of Fig. 1. It has been chosen, without
loss of generality, to be spherically symmetric on average so
that averaged quantities can be calculated analytically. The
emitter is surrounded by an exclusion volume with radius
R0. A minimum distance d0 is forced between the point
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scatterers, so that one can define an effective volume fraction
f = N (d0/2)3/(R3 − R3

0). In the numerical simulations, we
have kept f � 2% so that correlations in the position of
the scatterers remain negligible. The scatterers are described
by their polarizability α(ω) = −3πc3γ /[ω3(ω − ω0 + iγ /2)]
where ω0 is the resonance frequency, γ is the linewidth, and
c is the speed of light in vacuum. This corresponds to the
polarizability of a resonant nonabsorbing point scatterer, as
a two-level atom far from saturation. In order to reach the
multiple-scattering regime with a dilute system and a relatively
small number of scatterers (N � 103), we assume an emission
frequency ω0, so that the scatterers are on resonance. The
scattering cross section is σs(ω0) = (k4

0/6π )|α(ω0)|2 ∼ λ2
0,

where λ0 is the wavelength in vacuum and k0 = ω0/c =
2π/λ0. The parameter k0�B measures the scattering strength,
where �B = [ρσs(ω0)]−1 is the independent-scattering (or
Boltzmann) mean-free path and ρ = N/V is the density of
scatterers. On resonance, one has k0�B = [ρ|α(ω0)|]−1. In all
the numerical computations that follow, we have taken the
following set of parameters: ω0 = 1015 Hz,λ0 = 1.88 µm,
R0 = 0.36 µm, and d0 = 0.12 µm. The density ρ = N/V

is the adjustable parameter that allows us to vary k0�B in the
range 1 <∼ k0�B � 10.

In the weak-coupling regime, the spontaneous decay rate
of a dipole emitter takes the form

�u = 2

h̄
µ0ω

2
0|p|2Im[u · G(r0,r0,ω0) · u], (1)

where p = pu is the transition dipole and u is a unit vector [15].
The dyadic Green function G connects the electric dipole at
position r0 to the radiated electric field at position r through the
relation E(r) = µ0ω

2
0G(r,r0,ω0) · p. In free space, the decay

rate is obtained from the vacuum Green function G0, and reads
�0 = ω3|p|2/(3πε0h̄c3). In the present study, we consider the
decay rate � averaged over the transition dipole orientation u:

� = 2

3h̄
µ0ω

2
0|p|2Im[Tr G(r0,r0,ω0)], (2)

where Tr denotes the trace of a tensor. Note that the statistical
properties of � may be very different from that of �u [14]
since the decay rate is strongly orientation dependent [16]. The
decay rate � is proportional to the electric-field contribution
to the LDOS [17]:

ρ(ω0,r0) = 2ω0

πc2
Im[Tr G(r0,r0,ω0)], (3)

so that measurements of � gives direct access to the LDOS.
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FIG. 1. (Color online) Statistical distribution of the decay rate �

for three different scattering strengths. For k0�B = 2 (dense systems),
R = 4.96 µm and �B = 0.6 µm. For k0�B = 4, R = 6.24 µm and
�B = 1.2 µm. For k0�B = 10 (dilute systems), R = 8.47 µm and
�B = 3.0 µm. The radius R in each case is large enough to avoid finite-
size effects. The calculations are performed with N = 500 scatterers
and 1 080 000 configurations. Inset: schematic view of the system.

The calculation of the statistical distribution of � amounts
to calculating the Green function G(r,r0,ω0) = G0(r,r0,ω0) +
S(r,r0,ω0) for an ensemble of realizations of the scattering
medium. Since G0 is known analytically, we only need to
calculate the Green function S(r,r0,ω0) which corresponds to
the scattered field. To proceed, we perform a coupled-dipole
numerical computation. The field-exciting scatterer j is given
by the contribution of the dipole source and of all other
scatterers, leading to a set of 3N self-consistent equations [18]:

Ej = µ0ω
2
0G0(rj ,r0)p + α(ω0)k2

0

N∑

k=1
k �=j

G0(rj ,rk)Ek, (4)

where rj is the position of scatterer j and the dependence of the
Green functions on ω0 have been omitted. This linear system
is solved numerically for each configuration of the disordered
medium. Once the exciting electric field at each scatterer is
known, it is possible to compute the scattered field at the
source position r0 and deduce the Green dyadic S(r0,r0,ω0),
from which � is readily obtained. In this numerical approach,
near-field and far-field dipole-dipole interactions and multiple
scattering are rigorously taken into account.

III. NUMERICAL RESULTS

We show in Fig. 1 the statistical distribution of the decay rate
P (�) for three different densities of scatterers, corresponding
to a multiple-scattering regime with 2 � k0�B � 10. We first
observe that the curves exhibit broad distributions, with values
of �/�0 ranging from 0.38 to 6 or even more. This corresponds
to much larger fluctuations than those observed in the single-
scattering regime, where �/�0 deviates only slightly from
unity [13,14]. Interestingly, the computations also show that
the probability of having � < �0, denoted by P (� < �0) in
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FIG. 2. (Color online) Probability density P (� < �0) versus the
normalized size k0R of the cluster, deduced from distributions similar
to those in Fig. 1, computed for different sizes R of the cluster. The
end point k0R = 12 corresponds to R/�B = {6,3,1.2} in the three
situations k0�B = {2,4,10}, respectively.

the following, is not negligible. This means that a substantial
number of configurations lead to a reduction of the LDOS
compared with the free-space value. We checked that this
reduction of the LDOS results from the interaction of the
emitter with several scatterers (multiple scattering). Indeed, in
the single-scattering regime, one has P (� < �0) � 0 [13,14].
A reduction of the decay rate of diamond color centers due
to scattering in powders has been reported recently [19] and
seems to support the results of these simulations.

In order to get more insight into the conditions leading to
a reduction of the decay rate, we plot in Fig. 2 the probability
P (� < �0) versus the size R of the cluster for the same values
of k0�B as in Fig. 1. Two points should be emphasized. First, if
the thickness of the system is large enough, the probability
of having a decay rate � smaller than the vacuum decay
rate �0 is substantial and can reach 50% for specific sets of
parameters. Moreover, except for very small values of R/�B,
this probability increases with k0�B. Secondly, we observe
the presence of oscillations whose periodicity is, as we shall
see, λ0/[2Re(neff)] where neff is the effective refractive index
describing the behavior of the averaged field. This suggests
that the reduction of the decay rate results from a collective
effect. Up to system sizes R ∼ 5�B, this collective effect
is sensitive to the full size R of the finite-size system. For
R >∼ 5�B, the oscillations vanish and finite-size effects become
negligible. This observation is also consistent with the fact
that, in this range of parameters, small values of � cannot be
obtained when the dipole source is interacting with only one
scatterer [13].

IV. AVERAGED DECAY RATE AND EFFECTIVE
MEDIUM APPROACH

The oscillating behavior in Fig. 2 is the combination of
collective interactions and finite-size effects, which should
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FIG. 3. (Color online) Averaged normalized spontaneous decay rates 〈�〉/�0 versus the normalized system size k0R, computed using the
exact numerical simulation (NS), a Maxwell-Garnett mixing rule (MG), and a fit of the effective refractive index (EM). The parameters are the
same as in Figs. 1 and 2.

also be observed in the averaged decay rate 〈�〉. In the
absence of correlations in the scatterers positions, the averaged
Green function can be described by an effective-medium
theory [2], which relies on the computation of an effective
dielectric function (or effective refractive index). For a system
made of uncorrelated point dipoles, and in the absence of
recurrent scattering, the Maxwell-Garnett (MG) mixing rule
can give accurate results, even in the multiple-scattering
regime [20]. In this approach, the effective dielectric function is
given by

εMG(ω0) = 3 + 2ρα(ω0)

3 − ρα(ω0)
(5)

and the effective refractive index is nMG = √
εMG. Note that for

a medium with identical scatterers, this expression is identical
to that given by the Lorentz-Lorenz model [21]. From this
value of the dielectric function and the expression of the Green
function of a homogeneous sphere of radius R with a spherical
cavity of radius R0 at its center [22], one can compute the
averaged normalized decay rate �MG. This effective-medium
result can be compared to the averaged decay rate 〈�〉 obtained
from the numerical simulation. The results are plotted in Fig. 3
versus the system size R, for the same parameters as in Figs. 1
and 2. We observe the same oscillating behavior as in Fig. 2
for the probability P (� < �0). For k0�B = 10, the MG theory
reproduces well the variations of 〈�〉/�0. In particular, the
period of the oscillations is half the effective wavelength
λMG = λ0/Re(nMG), confirming an interference effect in the
finite-size effective medium. The accuracy of the MG theory in
this case results from the absence of correlations in positions
between the scatterers (low effective volume fraction f < 2%)
and the absence of recurrent scattering [21]. For k0�B = 4 and
k0�B = 2, the scattering strength becomes larger and recurrent
scattering is no longer negligible. As expected, this severely
limits the accuracy of the MG theory. Nevertheless, 〈�〉 can
still be fitted using an effective refractive index neff �= nMG, as
seen in Fig. 3 (right panel). The real part of neff is determined
by the period of the oscillations λ0/[2Re(neff)]. The imaginary
part is chosen to fit the averaged decay rate for large systems
(for which finite-size effects vanish). For the parameters used
in the simulation with k0�B = 2, the value is found to be neff =
1.04 + 0.17i. The real part is almost the same as in the MG

theory whereas the imaginary part is rather different. The latter
describes attenuation by scattering, with a scattering mean-free
path � = λ0/[4π Im(neff)] that is different from the Boltzmann
mean free path �B. This difference is the signature of the
existence of recurrent scattering in the disordered system;
namely, repeated scattering by the same scatterer. Although
the recurrent-scattering correction is expected to produce
spatial dispersion (nonlocality) in the dielectric function, this
remains negligible in the absence of spatial correlations in
the positions of the scatterers and when the scattering process
is dominated by far-field interactions [23]. This is observed
in our calculations, where the averaged decay rate 〈�〉 can
be described using an effective-medium model based on an
isotropic and local refractive index, even in a strong-scattering
regime (k0�B = 2). In these conditions, as shown in Ref. [9],
one should be able to find a specific frequency range in
which 〈�〉 is smaller than �0. The frequency range depends
on the dispersive behavior of the scattering medium. A
numerical validation of this theoretical result is left for further
studies.

Finally, let us discuss the possibility of measuring the LDOS
in a disordered finite-size system made of resonant scatterers.
The decay rate � is the inverse of the lifetime τ of the excited
state of a dipole emitter, provided that this lifetime can be
measured by usual techniques, assuming that the transit time of
a photon from the emitter to the detector is negligible compared
to τ . In the multiple-scattering regime, and for resonant point
scatterers, this transit time is �t ∼ R2/D, where D = vE�B/3
is the photon diffusion coefficient. The transport velocity is
dominated by the dwell time (or Wigner time) due to the
resonance of the scatterers, so that vE = γ �B [6,24]. One ends
up with �t ∼ 3R2/(γ �2

B). The condition on the decay rate that
enables a measurement through standard lifetime techniques
is � � γ /b2

0, where b0 = R/�B is the optical thickness of
the medium and γ is the linewidth of the resonant point
scatterers.

V. CONCLUSION

In conclusion, we have studied the statistics of the sponta-
neous decay rate of a dipole emitter embedded in a strongly
scattering medium on the basis of exact numerical simulations.
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We have investigated the multiple-scattering regime in which
the source interacts with more than one scatterer, with 1 <∼
k0�B � 10. We have shown that a reduction of the spontaneous
decay rate can be observed with a non-negligible probability,
which corresponds to a reduction of the LDOS. This reduction
of the LDOS is a consequence of collective interactions and
interferences. In the absence of correlations in the positions
of the scatterers, an effective-medium model can reproduce
the behavior of the average decay rate. For k0�B = 2, the
effective-medium model demonstrates the existence of recur-

rent scattering inside the medium. The approach described in
this paper may be extended to study the behavior of the LDOS
in random lasers based on resonant point scatterers [25,26]
and in the presence of sub- or superradiant modes in atomic
systems [27].
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[14] L. S. Froufe-Pérez and R. Carminati, Phys. Stat. Sol. (a) 205,
1258 (2008).

[15] J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185
(1984).

[16] W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, Phys. Rev. A
80, 053802 (2009).

[17] K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Phys. Rev.
B 68, 245405 (2003).

[18] M. Lax, Phys. Rev. 85, 621 (1952).
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