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Fluorescence quenching by a metal nanoparticle
in the extreme near-field regime
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We study the spontaneous decay rate of a dipole emitter close to a metallic nanoparticle in the extreme near-
field regime. The metal is modeled using a nonlocal dielectric function that accounts for the microscopic
length scales of the free electron gas. We describe quantitatively the crossover between the macroscopic and
microscopic regimes and the enhanced nonradiative decay due to microscopic interactions. Our theory is in
agreement with results previously established in the asymptotic near- and far-field regimes. © 2010 Optical
Society of America
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The controlled modification of spontaneous emission
is a central issue in photonics. Modifications of the
spontaneous decay rate of molecules close to metallic
surfaces [1] or atoms in cavities [2] have become text-
book examples. The development of nano-optics tech-
niques has stimulated the use of metallic nanopar-
ticles or tips to act on the excited-state lifetime [3], on
the fluorescence intensity [3,4], and on the radiation
pattern [5,6] of isolated emitters, leading to the con-
cept of optical nanoantenna. The interplay among the
enhancement of the excitation intensity, nonradiative
decay, and changes in the radiation pattern [7,8] of-
fers useful degrees of freedom. Fluorescence en-
hancement can be optimized for imaging applications
or single photon sources, while efficient quenchers
can be designed for biochemical applications [9,10].

In this Letter we study quantitatively the sponta-
neous decay rate of a single emitter coupled to a me-
tallic nanoparticle, up to a regime in which the mac-
roscopic description of the electrodynamics of the
metal surface breaks down. This regime is expected
when the distance to the metal surface is on the order
of the microscopic length scales driving the electron
dynamics. In this regime, the metal surface has to be
described using a spatially nonlocal dielectric func-
tion. In the context of molecular fluorescence, a gen-
eral formalism and the main trends have been de-
scribed by Ford and Weber [11]. More recently, a
giant enhancement of the nonradiative decay rate
due to microscopic interactions at a plane metal sur-
face has been predicted [12], and a simplified nonlo-
cal model has been used to describe the change in the
radiative and nonradiative decay rates of molecules
adsorbed on small nanoparticles [13]. In the present
study, we describe the full crossover between the far-
field regime and the extreme near-field regime (up to
physical contact) in the case of nanoparticles with
size R satisfying ��R��, where � is the electron
mean free path and � is the emission wavelength.
Note that this condition does not include the case of
very small particles �R�10 nm� [13,14] in which
other mechanisms, such as quantum confinement,

can be involved. Handling the full emitter-
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nanoparticle distance range requires a more sophis-
ticated model than that used in [12,13] and allows us
to determine precisely the breakdown of the macro-
scopic approach, thus providing an answer to a recur-
rent issue in nano-optics [15].

In the weak-coupling regime, the spontaneous de-
cay rate of a dipole emitter located at position r takes
the form �= �2/���p�2Im�u ·G�r ,r ,�� ·u�, where p is
the transition dipole, u=p / �p�, and � is the emission
frequency [16]. The dyadic Green’s function G de-
scribes the electrodynamic response of the environ-
ment. It connects an electric dipole at position r to
the radiated electric field at position r� through the
relation E�r� ,��=G�r� ,r ,�� ·p. In free space, the de-
cay rate is obtained from the vacuum Green’s func-
tion and reads �0=�3�p�2 / �3��0�c3�.

For a single emitter interacting with a spherical
nanoparticle, G can be computed using the Mie series
[17]. The decay rate obtained with this approach is
shown in Fig. 1 (blue solid line) versus the distance z
between the emitter and the surface of a silver nano-
particle with radius of R=25 nm. The bulk value of

Fig. 1. (Color online) Normalized decay rate � /�0 close to
a silver sphere �R=25 nm� versus the distance z between
the emitter and the sphere surface. Emission wavelength
�=700 nm. The nanoparticle is described by a local (bulk)
dielectric function with three different models: electric di-
pole model (black dashed line), Mie theory (blue solid line),

and plane model (red dotted line).
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the dielectric function of silver is used, with �
=−24.2+0.91i at the emission wavelength of �
=700 nm [11]. One can identify three regimes. For
small particles �R��� and large distances �z	R�, the
electric dipole approximation can be used [18]. The
result obtained with this approximation is plotted in
Fig. 1 (black dashed line) and is in agreement with
the exact Mie calculation for z
2R. For very short
distances �z�R�, the nanoparticle can be modeled by
a semi-infinite medium with a plane interface. The
result obtained in the plane approximation is plotted
in Fig. 1 (red dotted line), and the calculations for the
sphere and for the plane coincide for z�12 nm (i.e.,
z�R /2). In this regime, the decay rate exhibits a z−3

power law dependence, which is a well-known result
in the macroscopic theory [1]. In the intermediate re-
gime �20�z�200 nm�, the decay rate obtained with
the (infinite) plane surface is larger than that of the
nanoparticle due to a larger effective cross section,
with the radiative and nonradiative decay rates be-
ing on the same order of magnitude (calculation not
shown for brevity). With the nanoparticles considered
in this study (with radius of R�20–100 nm) one ex-
pects the deviation from the macroscopic description
(based on bulk values of the dielectric function) for
distances z on the order of the microscopic length
scales driving the electron dynamics. Since these
scales are on the order of 1–10 nm for noble metals,
the deviations should occur in the regime z�R /2,
where the nanoparticle behaves as a plane surface.
For this reason, the microscopic theory that is devel-
oped below is limited to the case of a flat surface.

The Green’s dyadic G is known analytically in Fou-
rier space for a flat surface [19]. For a transition di-
pole oriented along the normal to the surface (z direc-
tion), the normalized decay rate reads

�
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= 1 +
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In this expression k0=� /c, �1 is the dielectric function
of the medium surrounding the emitter, q1�K�= ��1k0

2

−K2�1/2 with the determination Im q1�K�
0, and
rp�K� is the Fresnel reflection factor for p polarization
at the metal interface (this is the only polarization in-
volved for a dipole emitter oriented along the z direc-
tion). When the distance z becomes comparable to (or
smaller than) the microscopic length scales describ-
ing the electron dynamics, the response of the metal
differs from that of the bulk material. First, the di-
electric function becomes spatially nonlocal or
wavevector dependent in Fourier space (one refers to
spatial dispersion, by analogy with frequency disper-
sion which corresponds to nonlocality in the time do-
main). We use the Lindhardt–Mermin (LM) model,
described in [11] and used recently to model nano-
scale radiative heat transfer [20,21]. Second, the mi-
croscopic behavior of the electron gas at the interface
has to be handled. In the infinite barrier model, in
which electrons at the surface undergo specular re-

flection, the Fresnel reflection factor can be written
in terms of a surface impedance Z�K� [11],

rp�K� =
q1�K�/���1� − Z�K�

q1�K�/���1� + Z�K�
. �2�

The surface impedance depends on the transverse
and longitudinal components of the nonlocal dielec-
tric function of the metal,

Z�K� =
2i

��
�

0

� � q2

�t�k,�� − �k/k0�2 +
K2

�l�k,��	dq

k2 , �3�

with k2=K2+q2. In the LM model, the longitudinal
and transverse dielectric functions read

�l�k,�� = �b +
3�p

2

� + i�
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� + i�fl�a,u�/fl�a,0�
, �4�
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�p

2

�2�� + i��

��ft�a,u� − 3a2fl�a,u��

+ i��ft�a,0� − 3a2fl�a,0���, �5�

where �p is the plasma frequency and � is the elec-
tron collision rate. The constant �b is an effective pa-
rameter accounting for interband transitions, as in
the classical Drude model (the latter being recovered
at large scales or small k). The arguments a
=k / �2kF� and u= ��+ i�� / �kvF�, with kF and vF being
the Fermi wavevector and velocity, contain the rel-
evant microscopic length scales: the electron mean
free path �=vF /�, the distance 
=vF /� traveled by an
electron during one period of the electromagnetic
field, and the Fermi wavelength �F=2� /kF. The func-
tions fl�a ,u� and ft�a ,u� are given in [11,21] and are
summarized as a note for completeness [22]. The
model includes the mechanism of Landau damping,
i.e., absorption of photons by accelerated free elec-
trons in the regime k

1 that was described previ-
ously in [12]. We stress that the use of the full LM
model with both longitudinal and transverse dielec-
tric functions is necessary in order to describe con-
tinuously the transition to the macroscopic approach
when z increases, as well as the influence of the elec-
tron mean free path.

We show in Fig. 2 the normalized decay rate for a
flat surface of silver, computed using the local (red
dotted line) and the nonlocal (blue solid line) models
at a wavelength of �=700 nm. At short distance, the
decay rate increases in both cases due to nonradia-
tive coupling (the radiative decay rate is negligible).
The slope is larger in the nonlocal model than pre-
dicted by the macroscopic theory due to nonradiative
coupling to free electrons on scales smaller that the
mean free path. For z=1 nm, the decay rate com-
puted with the microscopic approach is eight times
larger. The deviation starts for z�� (�=vF /�=16 nm
for silver), which sets the onset of the breakdown of
the macroscopic approach. At such distances, the
quasi-static approximation is accurate as shown in
the inset in Fig. 2 and allows one to compute approxi-
mate expressions. The macroscopic approach predicts

−3
��z . In the regime z�
��, where the Landau
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damping is expected to dominate, the microscopic ap-
proach predicts ��z−4 [12], which is in good agree-
ment with the slope given by the full calculation in
Fig. 2. Finally, we note that, for z�0.5 nm, the onset
of a saturation of the decay rate is observed. Indeed,
for wavevectors k
kF, the model predicts a reduced
absorption due to a sharp cutoff in the imaginary
part of the dielectric function [21]. Although this
saturation is expected physically at some point, a
precise computation in this region would require a
more refined model, including an atomic description
of the interface.

We have given a framework for the calculation of
the spontaneous decay rate from the extreme (micro-
scopic) near-field regime to the far-field (macroscopic)
regime, with a full description of the crossover (the
blue solid curves in Figs. 1 and 2 can be continuously
connected). For nanoparticles satisfying R
 l, the
electron mean free path � has been confirmed as the
critical distance below which the macroscopic de-
scription breaks down. In the regime z�R, the non-
radiative decay rate dominates (quenching) and can
be enhanced due to microscopic interactions. It coin-
cides with that of a plane surface, being essentially
independent on the size and shape of the nanopar-
ticle. The enhanced nonradiative decay rate trans-
lates into the apparent quantum yield � (or the
quenching efficiency QE=1−�). For silver and a dis-
tance of z=1 nm, our calculation predicts a reduction
in � by a factor of 8 compared to the value predicted
by the macroscopic description. A similar but weaker
trend is observed for gold at the same wavelength.
For z=1 nm, one obtains a reduction in � by a factor

Fig. 2. (Color online) Normalized decay rate � /�0 in the
extreme near-field regime for a silver plane. Emission
wavelength �=700 nm. Red dotted line, bulk dielectric
function. Blue solid line, nonlocal model with parameters
�b=3.6, �p=1.42�1016 s−1, and �=8.79�1013 s−1 [11]. The
relevant length scales are indicated on the horizontal axis.
Inset, comparison between the quasi-static approximation
and the full calculation using the nonlocal model.
of 2. The weakness of the effects for gold, as well as a
smaller mean free path ��=12 nm�, might explain the
apparent robustness of macroscopic approaches in
describing experimental results with gold nanopar-
ticles for z
5 nm [3,4,8].
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