
 

Optimizing Light Storage in Scattering Media with the Dwell-Time Operator
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We prove that optimal control of light energy storage in disordered media can be reached by wave front
shaping. For this purpose, we build an operator for dwell times from the scattering matrix and characterize
its full eigenvalue distribution both numerically and analytically in the diffusive regime, where the
thickness L of the medium is much larger than the mean free path l. We show that the distribution has a
finite support with a maximal dwell time larger than the most likely value by a factor ðL=lÞ2 ≫ 1. This
reveals that the highest dwell-time eigenstates deposit more energy than the open channels of the medium.
Finally, we show that the dwell-time operator can be used to store energy in resonant targets buried in
complex media, without any need for guide stars.

DOI: 10.1103/PhysRevLett.123.243901

Recent developments in wave front shaping protocols
have allowed spectacular demonstrations of light manipu-
lation in complex media [1,2], such as noninvasive imaging
in biological tissues [3,4], focusing [5] or enhanced power
delivery [6–8] behind opaque media, or focusing [9–11]
and enhanced absorption [12] inside scattering materials.
The large number of degrees of freedom supported by
disordered systems has also been proposed as a resource for
imaging with high resolution [13,14], controlling the
strength of light-matter interaction [15–17], or performing
optically complex and reconfigurable operations [18].
In this context, great attention has been given to the

properties of the transmission matrix t [19–23]. This matrix
admits a significant fraction of singular states, called open
channels, responsible for complete destructive (construc-
tive) interference in reflection (transmission), even if the
medium is opaque on average [24,25]. The intensity map
inside the medium resulting from the propagation of open
channels has also been elucidated [26], revealing a bell-
shaped profile along the propagation direction very differ-
ent from the linear decay obtained with plane wave
illumination [27]. This property makes open channels good
candidates for significantly enhancing energy deep inside
disordered media [28–30]. However, these states are, by
construction, those maximizing the output flux (they are
eigenstates of the operator t†t associated with the largest
eigenvalues) and not necessarily the stored energy. The
transverse localization of open channels, discovered recently
[31], also supports the idea that they are not necessarily the
ones optimizing energy storage.
In this Letter, we explicitly build an operator for dwell

time (or stored energy) in complex media illuminated with
monochromatic light. Its expression can be obtained
directly from the scattering matrix of the medium and
the dispersion properties of the surroundings. First, we

show that the dwell-time (DT) operator is not strictly
identical to the Wigner-Smith matrix, introduced histor-
ically to characterize the duration of a scattering process
[32], by identifying a contribution resulting from the
interference between the incident and scattered fields,
similar to that predicted in 1D for electrons [33].
Second, we study its eigenvalue distribution pðτÞ for wave
propagating through a disordered slab of thickness L ≫ l,
where l is the light mean free path. We find that for
nonresonant scattering pðτÞ is parametrized by two time-
scales only: the scattering time τs ∼ l=c (c being the speed
of light in vacuum), as well as the mean time hτi ∼ L=c,
which is known to be remarkably independent of the
disorder strength [34,35]. It also exhibits a dominant peak
at τ ∼ τs and has a finite support with a maximal DT
eigenvalue τmax ∼ hτi2=τs. This last result implies that the
maximal energy that can be stored in a disordered medium
by wave front shaping with fixed input power ϕin scales as
Umax ∼ ϕinτTh, where τTh is the Thouless time. Finally, we
show that the DT operator is a powerful tool to selectively
deposit energy on local resonant targets embedded in a
given realization of a complex medium.
Let us start with the construction of the DT operator. For

clarity, we restrict the present discussion to the propagation
of scalar waves in nonresonant and nonabsorbing materials,
described by the equation ½∇2 þ k2ϵðrÞ�ψðrÞ ¼ 0. Here,
ϵðrÞ is the (real) dielectric function, and ψ is the complex
amplitude of the monochromatic wave with frequency
ω ¼ ck. The quantity to maximize is the electromagnetic
energy U ¼ ϵ0

R
V drϵðrÞjψðrÞj2=2, where V is the volume

occupied by the disordered slab. From the wave equation,
we readily obtain the relation

ϵðrÞjψðrÞj2 ¼ c2

2ω
∇ · ð∂ωψ∇ψ� − ψ�∂ω∇ψÞ; ð1Þ
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which allows us to express the energy as the surface integral

U ¼ ϵ0c2

4ω

Z
S
dr n · ð∂ωψ∇ψ� − ψ�∂ω∇ψÞ; ð2Þ

where S denotes the input and output surfaces of the slab
and n is the outward normal on them. For a Schrödinger
wave ψ , a similar relation holds [32], which involves the
probability

R
V drjψðrÞj2 instead of U. The former is

independent of the explored potential, contrary to U that
depends on ϵðrÞ. Equation (2) is the scalar version of the
energy theorem known for electromagnetic fields [36].
Next, we express the field ψ on each surface in terms of
the incident field ψ in and the reflection and transmission
matrices (including evanescent channels). Here, we consider
a disordered slab embedded in a multimode waveguide
supporting N propagating channels, so that the reflection
and transmission matrices restricted to this channel basis,
denoted r and t, respectively, are of size N × N. Relegating
the technical derivation to the Supplemental Material [37],
we find that the stored energy can be expressed as

U ¼ ϕinhψ injQdjψ ini; ð3Þ

where the DT operator Qd is a sum of three contributions,
with clear and distinct meanings discussed below,

Qd ¼ QþQe þQi: ð4Þ

Dependingon the physical situation of interest (choice ofψ in,
size and scattering strength of the medium), each of these
terms can produce the dominant contribution to U. We
discuss their expressions below for an incident field without
evanescent component and injected from one side of the slab
only, which corresponds to the most common experimental
situation. More general expressions are given in the
Supplemental Material [37].
The first term on the right-hand side in Eq. (4) is the well-

known Wigner-Smith matrix Q ¼ −iðt†∂ωtþ r†∂ωrÞ,
which characterizes the duration of the scattering process
for quasimonochromatic signals [2,32,45]. For one-dimen-
sional free space propagation, it would reduce to Q ¼ L=c.
The utility of this operator for controlling wave propagation
in multimode fibers and disordered media has been
demonstrated in recent years [10,46–50]. The second term
captures scattering contributions into evanescent channels.
It readsQe ¼ ðt†eDete þ r†eDereÞ=2, where re and te are the
reflection and transmission matrices into evanescent chan-
nels of the waveguide [51]. The matrixDe is diagonal, with
elements De

αβ ¼ ð∂ωκα=καÞδαβ, where κα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2α − k2

p
is

the inverse decay length of the evanescent channel α
(qα ¼ απ=W in a 2D waveguide of width W). The con-
tribution of Qe cannot be neglected close to the onset of a
new propagating mode of the waveguide [37,52,53]. The
important impact of evanescent channels on dwell times

has also been revealed recently in the case of scattering by
subwavelength particles [54]. However, the contribution of
Qe to the distribution pðτÞ studied below turns out to be
negligible for all frequencies except a discrete set (see
Supplemental Material [37]) and will not be discussed
further.
The third term in the decomposition (4) describes a

qualitatively different contribution, due to the interference
between the incident and reflected propagating fields. Since
the total field is ψ ∼ ψ in þ rψ in on the front surface and
ψ ∼ tψ in on the back surface, the field products in Eq. (2)
involve cross terms in reflection only. The associated
matrix readsQi ¼ −iðDr − r†DÞ=2, whereD has elements
Dαβ ¼ ð∂ωkα=kαÞδαβ, and kα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − q2α

p
. In the

Supplemental Material [37], we provide an alternative
proof of Eq. (4) based on the continuity equation that
highlights the close connection between Qi and the
interference term between the incident and scattered field
at the origin of the optical theorem [55]. The contribution of
Qi becomes appreciable for input states with large reflec-
tion in directions nearly parallel to the sample surface. For
this reason, it cannot be neglected in strongly scattering
media. In particular, it contributes substantially to the lower
part of the DT eigenvalue distribution in the regime L ≫ l
(see Supplemental Material [37]).
Equation (4) generalizes to arbitrary scattering media

and arbitrary dimension (arbitrary N) the relation estab-
lished for electrons [33] or electromagnetic waves [56]
interacting with a simple barrier (for which Qe is zero), in
the case N ¼ 1. For electrons, the trace of the matrix Qi is
known as a correction to the Friedel sum rule [45], which
relates the density of states (∼TrQd) to the Wigner time
delay (∼TrQ). In its operator form, the difference between
Qd and Q has also been pointed out in Refs. [2,57,58], but
not expressed in the explicit and computationally useful
expansion given by Eq. (4).
To characterize the properties of the matrix Qd, we

performed extensive numerical simulations of scalar wave
propagation through two-dimensional disordered slabs
placed in a multimode waveguide using the recursive
Green’s function method [37] and computed Qd as defined
in Eq. (4). The eigenvalue distribution pðτÞ of Qd is
represented in Fig. 1 for three values of the disorder
strength 1=kl, in the regime of diffusive transport kL ≫
kl ≫ 1 and large conductance g ¼ Nl=L ≫ 1. We find
that pðτÞ has a pronounced peak that shifts toward small
time as kl decreases. This illustrates the fact that most of
the light experiences a few scattering events before being
reflected after a time ∼l=c. On the other hand, a close look
at the largest eigenvalues (see inset) reveals that pðτÞ is
bounded, with an upper edge τmax that increases with the
disorder strength. This effect is triggered by light crossing
the sample by diffusion, a process that takes more time
when the mean free path is reduced since the number of
scattering events is increased.
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To support the previous observations, we developed an
analytical model for pðτÞ. Since Qd and Q have similar
spectra, with differences observed at small times only (see
Supplemental Material [37]), we work with Q in the
theoretical development. First, following Ref. [59], we
use the simple relation that links the scattering matrix
S ¼ ðrtÞ in absence of absorption, to the scattering matrix
SaðωÞ ¼ Sðωþ i=2τaÞ with uniform absorption, where τa
is the absorption time. A first-order expansion gives
QðωÞ ≃ τa½1 − SaðωÞ†SaðωÞ� for ωτa ≫ 1. The advantage
of this relation lies in the fact that the joint probability
distribution (JPD) of the eigenvalues of the operator
SaðωÞ†SaðωÞ is known, for disordered media excited from
one side, in the limit L → ∞ [60,61]. Denoting by τn the
eigenvalues of Q, the JPD of the decay rates γn ¼ 1=τn
takes the form of the Gibbs distribution pðfγngÞ ∼ e−H,
with

H ¼ 2ðN þ 1Þτs
XN
n¼1

γn −
X
n<m

ln jγn − γmj; ð5Þ

where τs is the scattering time. In 2D, for nonresonant
scattering, it has to be defined as τs ¼ ðπ=2Þl=v, where
v ¼ c=n is the phase velocity (that coincides with the
energy velocity), n being the effective refractive index (see
Supplemental Material [37]). The Laguerre distribution
defined by Eq. (5) implies that Q−1 behaves as a Wishart
matrix in a disordered medium, a property which is also
true in a chaotic cavity [62,63]. In the first case,Q−1 has the
same JPD as the matrixHH†=τs, whereH is an N×ðNþ1Þ
Gaussian random matrix, while in the second case,Q−1 has
the JPD of HH†=hτi, where H is of size N × ð2N þ 1Þ.

The result in Eq. (5) was obtained for infinite-size
systems. In this limit, the marginal distribution pðτÞ
depends on τs only, with infinite hτi ¼ hPN

n¼1 τni=N. In
nonresonant systems of finite size L, it is known that hτi
scales as ∼L=c, both in the quasiballistic and diffusive
regimes [34,35]; in 2D, hτi ¼ ðπ=2ÞL=v. To restore a finite
mean time, we make the ansatz that H is still well
approximated by expression (5) in the regime g ≫ 1 and
search for pðτÞ that minimizes H under the constraintR
dτpðτÞ ¼ hτi. We find (see Supplemental Material [37])

pðτÞ ≃ 2τs
πτ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
α
τ

τs
− 1

��
1 − β

τ

τs

�s �
1þ γ

τ

τs

�
; ð6Þ

where α, β, and γ obey coupled equations depending on the
single parameter b≡ hτi=τs ¼ L=l. At large optical thick-
ness (b ≫ 1), they reduce to α ≃ 1, β ≃ 9=½4bðb − 4Þ�, and
γ ≃ 2β. The distribution (6) is maximum for τ ≃ 4τs=3 and
has a finite support ½τmin; τmax�, with τmin ≃ τs and

τmax ≃
4

9
hτi

�hτi
τs

− 4

�
; ð7Þ

which scales as the Thouless time τTh. This indicates that
the existence of states with dwell time parametrically larger
than τTh is unlikely in the limit of large conductance
considered here. Note that at moderate g, rare disorder
realizations may support prelocalized states, responsible for
a log-normal profile of pðτÞ for τ ≳ τTh [64,65]. Our
theoretical results are in excellent agreement with the
simulations, without adjustable parameter, as shown in
Fig. 1. The distribution pðτÞ is notably different from the
distribution of the spectral derivative of a speckle phase
pattern [66], exhibiting in particular a power law pðτÞ ∼
τ−3=2 for hτi≲ τ ≲ τmax. This is a hallmark of diffusion,
also observed in numerical simulation of the 2D kicked
rotor dynamics [65].
Our analysis reveals the existence of a finite maximal

eigenvalue τmax of Qd. According to Eq. (3), the corre-
sponding eigenstate jψmaxi should yield the largest amount
Umax of stored energy. To check this prediction, we
compared the intensity pattern produced inside the slab
by jψmaxi with that resulting from the propagation of other
remarkable wave fronts, such as the most open channel
jψoci (the eigenstate of t†t associated with the largest
transmission eigenvalue T ≃ 1). Representative results are
shown in Fig. 2(a). Contrary to the intensity profile created
by the first mode of the waveguide (which behaves as a
plane wave), both jψoci and jψmaxi give rise to a concen-
tration of energy deep inside the medium. In addition, the
intensity pattern due to jψmaxi is significantly larger than
that due to jψoci, when integrated over the transverse
dimension y. This clearly shows that Umax > Uoc.

FIG. 1. Eigenvalue distribution of the dwell-time operator Qd,
evaluated for a disordered slab (length kL ¼ 300) embedded in a
multimode waveguide (N ¼ 287). Analytical predictions (solid
lines) are compared with numerical results (dots) obtained from
the solution of the wave equation for 128 realizations of the slab,
with dielectric function ϵðrÞ ¼ n21 þ δϵðrÞ; n1 ¼ 1.5 and δϵðrÞ is
uniformly distributed in ½−a; a�. Results for three values of a are
represented, corresponding to kl ¼ 21.4, 9.3, 5.8.
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Using the analytical result (6), the ratio Umax=Uoc can be
evaluated precisely. In Ref. [26], it was shown that the
intensity profile created by jψoci in 2D is IocðxÞ ¼R
dyjψocðx; yÞj2 ¼ ðπ=2Þ½1þ ðπ=2ÞðL=lÞxðL − xÞ=L2�=k,

where x is the direction perpendicular to the slab. After
integration over x, we obtain Uoc ¼ ϕinτoc, with

τoc ≃
π

12
hτi

�hτi
τs

þ 12

π

�
: ð8Þ

Hence, Uoc grows quadratically with the sample thickness
L. It is much larger than the energy Upw deposited by a
plane wave that grows linearly with L [IpwðxÞ ∼ ðL − xÞ=
ðkLÞ gives Upw ∼ hτiϕin], but it is smaller than Umax.
Indeed, Eqs. (7) and (8) give Umax=Uoc ≃ 16=3π > 1.
These predictions are confirmed by the results of numerical
simulations presented in Fig. 2(b), where τmax ¼ Umax=ϕin

and τoc ¼ Uoc=ϕin are shown to be both larger than the
Thouless time τTh ¼ L2=ðπ2DBÞ, which is the longest
mode lifetime of the diffusion equation. In 2D, the light
diffusion constant is DB ¼ lv=2, so that τmax ≃ ðπ3=9ÞτTh
and τoc ≃ ðπ4=48ÞτTh for L ≫ l. In Fig. 2(b), we also show
that the ratio τmax=τTh can be increased by injecting light
from both sides of the sample. In this case, the average
intensity profile ImaxðxÞ presents a mirror symmetry with
respect to the middle of the slab x ¼ L=2, as imposed by
statistical invariance [see Fig. 2(a)]. Inspired by the micro-
scopic approach developed in Ref. [67], we could establish
(see Supplemental Material [37]) an expression for τmax in
this situation, which reads

τmax ≃ τs

�
ζ

�hτi2
τ2s

þ 4
hτi
τs

− 4

�
− 1

�
ð9Þ

at large optical thickness, where ζ ≃ 0.57 is the solution of
a transcendental equation. This prediction also agrees with
numerical simulations [see Fig. 2(b)].
We have discussed the properties of Qd in statistically

homogeneous nonresonant disordered materials and dem-
onstrated quantitatively superior (yet qualitatively similar)
performances of the largest DT eigenstates for energy
storage, compared to open channels. However, Qd is
specifically constructed to optimize the quality factor of
an arbitrary complex structure. This concept is radically
different from the monochromatic scattering properties
captured by t†t or r†r. To illustrate this last point,
let us consider a set of small absorbers buried
in an otherwise nonabsorbing disordered medium. One
of them, resonant at frequency ω0 with quality factor
ω0=Γ ≫ 1, is described by the Lorentzian dielectric
function ϵ ¼ 1þ ω2

0F=ðω2
0 − ω2 − iωΓÞ. Our goal is to

compare the performance of the absorption matrix A ¼
1 − t†t − r†r and the DT matrix in terms of focusing. In the
case of an arbitrary complex dielectric function, the matrix
Qd defined in Eq. (4) becomes non-Hermitian. By general-
izing relation (2) to this situation (see Supplemental
Material [37]), we established that the energy inside the
medium can be tuned by considering the eigenstates of the
Hermitian part of Qd defined as QH

d ¼ ðQd þQ†
dÞ=2. The

effect of the absorbing resonators on the spectrum of QH
d is

discussed in the Supplemental Material [37]. We show in
Fig. 3 the intensity patterns calculated inside the medium
at the resonance frequency ω0 and resulting from the
propagation of the states jψai, associated with the largest
absorption eigenvalue, and jψHi, associated with the
extremal eigenvalue of QH

d . We clearly see that jψai
deposits energy indistinctly on all absorbers, whereas

(a) (b)

FIG. 2. (a) Intensity profiles inside a disordered slab (integrated over the transverse dimension) resulting from the propagation of
different input states ψ in: the first mode of the waveguide (similar to a plane wave), the most open channel, and the eigenstate ψmax ofQd

associated with the largest eigenvalue τmax. (b) Dwell times τ ¼ hψ injQdjψ ini, averaged over 128 configurations (dots), corresponding to
the different states ψ in shown in (a) versus the Thouless time τTh ¼ L2=π2DB ¼ 2L2=π2lv. All times are normalized by
hτi ¼ ðπ=2ÞL=v. Solid lines correspond to analytical predictions (see text).
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jψHi focuses specifically on the resonant scatterer that will
induce the largest dwell time.
In summary, we have introduced a general setting for

tuning light storage in a complex medium based on the
dwell-time operator Qd. We showed that the distribution of
its eigenvalues takes the universal form (6) in the diffusive
regime. We demonstrated that the energy stored inside the
medium can be increased by more than 100% by using
eigenstates of Qd, instead of open channels. Finally, we
established that Qd can be used to address hidden resonant
targets without any need for guide stars, thus providing a
powerful tool for wave front shaping experiments.

We thank R. Pierrat for his help in the implementation of
the recursive Green’s function method at the early stage of
the work. This work was supported by LABEX WIFI
(Laboratory of Excellence within the French Program
Investments for the Future) under references ANR-10-
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Note added.—It was recently brought to our attention that a
decomposition of Qd for electrons similar to Eq. (4) is
contained in Ref. [68]. We thank S. Rotter for pointing
this out.
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