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We calculate the relative permittivity of a cold atomic gas under weak probe illumination, up to second order
in the density. Within the framework of a diagrammatic representation method, we identify all the second-
order diagrams that enter into the description of the relative permittivity for coherent light transmission. These
diagrams originate from pairwise position correlation and recurrent scattering. Using coupled dipole equations,
we numerically simulate the coherent transmission with scalar and vector waves and find good agreement with
the perturbative calculations. We applied this perturbative expansion approach to a classical gas at rest, but
the method is extendable to thermal gas with finite atomic motion and to quantum gases where nontrivial pair

correlations can be naturally included.
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I. INTRODUCTION

Cold atomic systems have been used to study various
phenomena related to the scattering and coherent transport
of light in disordered diluted media such as radiation trap-
ping [1,2], coherent backscattering [3,4], random lasing [5],
and (super)flash effect [6-9]. A lot of experimental efforts
have also been initiated to understand wave transport in
dense atomic media, when the light scattering mean free
path becomes comparable or even smaller than the wave-
length of light. In this case, the independent scattering ap-
proximation (ISA) is expected to break down and complex
collective or cooperative mechanisms emerge. As such, sig-
natures of light localization [10,11], collective emission of
light like superradiance and subradiance [12-15] have been
reported.

In parallel to experimental progresses, numerous theoret-
ical models and numerical simulations have been developed
to understand the scattering and transmission of light in dense
media [16-20]. Those approaches aim to go beyond the mean-
field model developed earlier by Friedberg, Hartmann, and
Manassah [21]. Indeed, while the mean-field model success-
fully predicted the Lorentz-Lorenz shift and the cooperative
Lamb shift observed in a thin atomic vapor cell [22], it fails
to explain the observations in cold atomic systems [23-25].
It seems, indeed, that dipole-dipole interaction, which is not
considered in the mean-field approach, become a dominant
mechanism when Doppler broadening is absent [18,26,27].
Numerical simulations of microscopical models, as coupled
dipole equations, are now commonly used to address those
problems [18,23,26,28,29]. They are useful in taking account
of the sizes and shapes of the atomic clouds encountered
experimentally. Those numerical methods are usually in fair
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agreement with experiments, but unfortunately do not always
give a clear understanding of the basic physical mechanisms
at play.

In this paper, we develop a perturbative model of the
coherent transmission of light through an atomic medium
where the scatterers are classical particles and considered at
rest. Using configuration averaging in a slab geometry, we
calculate the relative permittivity for an atomic medium at
zero temperature, up to 1/k3¢3, by expanding the self-energy
operator of light scattering in scattering diagrams. Here, ky is
the resonant wave vector of the transition and £ is the reso-
nant ISA mean free path. Even though the perturbative method
is limited to a density that is not too large, it gives analytical
expressions with clear physical origins of the modifications to
the refractive index. In particular, recurrent scattering of light
[30-33] (which arises from dipole-dipole interactions) and
position correlation of the atoms [34] are two main physical
mechanisms that modify the refractive index of an atomic
cloud. Similar approaches were taken in the past for quantum
gas [35-37]. Our theoretical results are in agreement with
those previous works when they are taken at the classical limit.
In addition, our perturbative expansion method allows for an
extension to cases where the atoms are moving [38]. This
latter point might be of particular importance to understand
how the temperature acts as a dephasing mechanism in a
collective scattering regime.

We compare the theoretical results to coupled dipole sim-
ulations of light transmission through the atomic medium. In
principle, the coupled dipole simulations can be performed in
the dense regime. However, a large number of atoms is re-
quired to correctly simulate the bulk behavior, which requires
a lot of computational resources and time. We are limited
to a highest number density that corresponds to kpfp = 9.1.
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Although this is still far from the dense regime of kyply ~ 1,
modifications to the ISA can already be observed.

This article is organized as follows. In Sec. II, we present
the theoretical formulation of the relative permittivity up to the
second-order term proportional to l/kgéﬁ. We introduce the
scalar wave formulation—neglecting the near field and light
polarization—before going to the more complex vector wave
formulation. We discuss in detail the three contributions: ISA,
pairwise positions correlation, and recurrent scattering in both
formulations. Some technical aspects of the calculation are
given in the Appendices. In Sec. I1I, the results are compared
to a numerical simulation of the transmission of light using the
coupled dipole equations. We find good agreement with the
perturbative calculations as far as the quantity kofy remains
larger than unity.

II. THEORETICAL FORMULATION

We consider a large scattering medium of volume V' con-
taining randomly positioned motionless atomic scatterers. The
number of atoms inside the medium is denoted by N,, with
N, > 1. We assume a uniform distribution for the position of
the scatterers, where the single-scatterer probability density to
find a scatterer at r; is given by Pi(r;) = 1/V.

In general, each atomic scatterer carries an exclusion vol-
ume around it, i.e., a second scatterer cannot be found within
a distance less than dp;, from the first one. This assumption
is useful for the numerical simulations, as it avoids possible
divergences. Finally, the limit dy,;, — 0 may be taken to
describe the experimental results.

The two-scatterer probability density for a scatterer at r,
and a second one at r is [34]

Pz(l‘p, rq) = Pl (rp)Pl (rq)[l + h(rp’ rq)]s (1)

where the function A(r,, r,) is the pair correlation function
between the pth and gth scatterers. For a statistically homo-
geneous and isotropic medium, the pair correlation function
depends only on the separation |r, — r,| of the two scatterers.
For “hard sphere” atoms with the exclusion volume, h(d) is
a complicated function of the interparticle distance d [39,40].
However, at a sufficiently low scatterer density, such as the
one we consider here, we can approximate:

1 ifd < dyin,
otherwise.

h(d) = {5 2

The formulation discussed in the following actually works
for an arbitrary pair correlation function, including those
describing the quantum statistics of Bose and Fermi gases.
It allows experimental studies of the effect of pair correlation
function, as has been demonstrated in Ref. [41].

The atomic scatterers are treated as two-level atoms with
a resonance frequency wg. There is no absorption of light in
the medium; all of the energy is elastically rescattered by the
atoms. We consider only the case where the intensity of the
incident wave is much smaller than the saturation intensity of
the transition, discounting any nonlinear effect. The polariz-
ability of the scatterers, in the rotating wave approximation

[42], is given by
(o)) r

— T 3)
2 w—wy+il'/2

o =
where ky = wy/c. For scalar waves, oy = 4 /kg. For vector
waves, og = 671/k8.

The system is illuminated by a monochromatic plane wave
at frequency wy, with a wave vector k;. The detuning of the
incident wave is § = w;, — wy K wy.

A. Scalar waves

In the scalar wave formulation, we disregard the light
polarization and describe the wave by a scalar “electric field.”
In the frequency domain, the incident electric field at position
r is denoted by

Ein(r) = Eg exp(—ikg - 1), “4)

where Ej is the amplitude.

The electric field at any position r is given by the coherent
superposition between the incident field and the field radiated
by all the atomic dipoles:

Na
E(r) = En(r) + pow; »_ Go(r —r)p(r;), (5

i=1

where (g is the vacuum permeability, p(r;) the dipole moment
of an atom at r;, and Gy(r — r;) the free space scalar Green
function that connects a point source dipole to its radiated
field. It is given by

exp(ik.[r — r']), (6)

Go(r —r') =
otr — 1) 4m|r — 1’|

where k; = |k.|. In the literature [43], the Green function is
sometimes defined with a minus sign compared to Eq. (6). As
a consequence, the self-energy computed later is also modified
by a minus sign. The sign convention has, of course, no
consequence for physically measurable quantities such as the
permittivity. The dipole p(r;) induced on atom i is given by

p(r;) = €oaEex(r)), (7

where € is the vacuum permittivity and Ee(r;) the field
exciting the atom (i.e., the field shining on the atom). It is
given by the coherent superposition between the incident field
and the field radiated by all other atoms:

Na
Een(r;) = Ein(r) + pro0} Y Go(r; — x)p(x)).  (8)

1=1
I#i

Thus combining Eq. (5) and Eq. (8) with Eq. (7) leads to a set
of equations, which allows us to compute the electric field at
any position,

Na

E(r) = En(r) + ki Y Gor = r)Ex(ri),  (9)
N

Eex(r;) = Ein(r;) + @k} Y Go(ri — 1)Eey(r;).  (10)

=1
I1#i

043806-2



COHERENT LIGHT PROPAGATION THROUGH COLD ...

PHYSICAL REVIEW A 99, 043806 (2019)

The coherent electric field, in the forward direction, is
given by the average electric field denoted by (E(r)). This
average is computed over all the possible configurations of the
positions of the atomic scatterers. In practice, this ensemble
average is carried out by averaging the positions of the scatter-
ers according to their probability distribution. Experimentally,
for a cold atomic cloud, the average is performed by a time
integration of the signal collected in the forward direction by
a CCD camera, with a small numerical aperture.

The coherent field obeys the following equation known as
the Dyson equation [44,45]:

(E(r)) = Ein(r) + / / Go(r —¥)2(r' — " WEx")d’r'd*,
(11)

where X(r' —r”) is the electromagnetic wave analog of the
self-energy for the scattering of quantum particles [43]: the
self-energy here contains all scattering processes between a
scatterer at r’ and another at r” that cannot be broken up into
two or more independent scattering processes. In a statistically
homogeneous medium, the Green function in the Fourier
space obeys the following equation:

(G)(k) = Go(k) + Go(k)E(k)(G) (k), 12)

where (G) is the average Green function of light in the atomic
medium, a diagonal operator in k space. The free space
Green function in k space is given by the following Fourier
transform:

/ - / 3./ 1
Go(k) =/Go(r)exp(—zk-r)d*r =3 i (13)

Thus, from Eq. (12), the average Green function is given by

1
(G) k) =

et (14)

For a statistically homogeneous medium, we expect that the
average Green function takes the same form as Eq. (13),
that is
1
(G (k) = 5—— (15)

2 _ 27
k keff

where k. is the effective wave vector associated to the relative
permittivity €, = k2;/k7. Comparing Egs. (14) and (15), we
have k%; = k? + 2(k). In the most general case, the effective
wave vector is nonlocal (i.e., its magnitude depends on k).
Nevertheless, if (k) < kf which is usually the case, the
average Green function is very peaked around k; and the
self-energy (k) can be approximated by X (k). This is
the so-called on-shell approximation. Therefore, the relative
permittivity is [46]

k')’ 1+ (16)
e=|—| = —_—.
ki i2

Note that, in general, the relative permittivity is a complex
quantity. The index of refraction, given by

X(kr)
= I 1 s
nEvarlitog

a7

T=04+06—0

+()—(“ )—()+()—(‘~ )—()—()+w+”_
+,,\ +," +," v

FIG. 1. Self-energy expanded in the diagrammatic representation
method. The first line consists of the diagrams representing ISA
and pairwise correlation in the scatterer positions. The second line
consists of diagrams that arise from pure recurrent scattering of
varying orders. The third line consists of diagrams that include
contributions from position correlation and recurrent scattering. Each
diagram here contains an average over the positions of all the atomic
scatterers. See the text for the meanings of the open circles and lines
in these scattering diagrams.

is also complex. Its imaginary part describes the exponen-
tial attenuation of the coherent beam through the disordered
medium thanks to scattering.

From the above equations, the calculation of the self-
energy is needed to find an expression for €,. In general, com-
puting the exact form of the self-energy is very complicated,
but perturbative diagrammatic methods exist, which expand
the self-energy in special kinds of diagrams that represent
the scattering processes in the medium. Additional details
of this approach can be found in numerous references, for
example, in Refs. [34,46,47]. The self-energy is written as
a sum of irreducible diagrams, namely those that cannot be
separated into two subdiagrams by cutting one of the lines in
the diagram. Position averaging is implied in these diagrams.
In Fig. 1, we write out all the contributing diagrams up to the
order of 1/k3¢3 for the self-energy. The open circles in the
diagrams represent scattering events. There are two types of
solid lines in the diagram. Those that join adjacent scattering
events represent the propagation of the wave between two
scattering events; the other solid lines join two scattering
events that occur at the same scatterer. Finally, the dashed
lines between two scatterers indicate that they are correlated
in their positions. Here, this is due to the exclusion volume
around each atom.

The lowest-order diagram in Fig. 1 consists of just one
scattering event. It describes the situation where each atomic
scatterer scatters light independent of one another. This is the
ISA contribution. The second term contains two scattering
events involving distinct scatterers that are correlated in their
positions. This gives a second-order contribution to the self-
energy. The diagrams in the second line of Fig. 1 give all the
contributions in second order from pure recurrent scattering
between two scatterers. The diagrams in the third line include
in recurrent scattering the effect of correlation in scatterer
positions. For convenience, we separate the self-energy into
three terms,

Y= z:ISA + Zcor + z:rec’ (18)

where Xjga is the first-order term that gives us the ISA, ¥
is the second-order term with pair correlation in the positions
(the second diagram in the first line of Fig. 1), and X,
includes all the remaining diagrams arising from recurrent
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scattering. We discuss each of these contributions separately
in the following.

1. Independent scattering approximation

We calculate now the first diagram in Fig. 1, which is the
ISA contribution. The self-energy is computed as follows:

Ny

Tisar —r) =" / ak}s(r — )Py (r))d’ri8(r —1').
i=1
(19)
Evaluating the above integral, we find in the k space
Yisa
= 20
2 (20)

Here, we have denoted the scatterers density as p = N,/V.
Thus, in the ISA regime, the relative permittivity is

€ISA = 1—|—pa (21)

It is also possible to write the above expression in terms of
the strength of the disorder kofy. For this purpose, we can
rewrite the two-level atomic polarizability as &« = &, where
& contains the § dependence of o:

r/2 B i
w—wy+il/2 1 —=2i8)T

a=- (22)

The scattering cross section at resonance is given by o, =
kooy. Additionally, the mean free path at resonance is given by
£y = 1/(poy). We finally obtain pog = 1/(kolp), connecting
the density to koZy. Hence the contribution in the ISA regime
is first order in 1/ky€ (or equivalently the first order in p),

1
=14+ —a. 23
€15A + koﬂoa (23)

2. Position correlations

The other diagrams in Fig. 1 are second-order diagrams.
The second diagram is related to the position correlation
between pairs of atoms. Its contribution to the self-energy is
calculated to be

2:cor(r - I'/)

N, N,
=33 // ak;s(r —r1)Go(r; — 1)

i=1 J=!
J#i

X akid(ry — r)PI(r)Pi(r)h(ry — 02 )d’ridory. (24)

We use the pair correlation function of Eq. (2) to evaluate
the integral. We then perform the Fourier transform to finally
arrive at the following equation in k space:

z:COI' 1

1 e
<2 2iding
— (1 — min
k; (kozo)za [4( T

i-

mini| s (25)

N |

where d.i, = k;dmin. We have made the on-shell approxima-
tion k ~ k;, with k = |Kk|. The details of this derivation are
found in Appendix A. We note from Eq. (25) that, in the
limit of dppin — 0, Zcor goes to zero, as expected in the scalar
approximation.

3. Recurrent scattering

The two-atom recurrent scattering diagrams in the second
and third lines of Fig. 1 come in different orders with varying
number of scattering events. For example, the first diagrams
in the second and third lines contain three scattering events.
This is the simplest possible recurrent scattering between
two distinct scatterers. We will denote the sum of these two
diagrams as ©{"). The number in the superscript denotes the
number of scattering events—n = 3 in this case. Now, we sum
over all orders,

o0
Tree = Y T, (26)
n=3

with each £ term containing one diagram from the second
line and one diagram from the third line of Fig. 1. We can
further distinguish two different types of recurrent scattering
diagrams. The first type consists of diagrams where the first
and last scattering events happen at the same scatterer. All
2™ terms with an odd value of n fall under this cate-
gory. These diagrams are known as the loop diagrams (see

Ref. [30]). The simplest example is £3):

rec*
Na  Na

2O —r) = ZZ/// ak?s(r —ry)

i=1 j=!
J#i

x Go(ry — 12)ak?Go(ry — r3)aki8(r; —r')
x Po(ry, 12)d’r1d°rad’r38(r — 1). (27)

The second type of diagrams have the first and last scattering
events occurring at two different scatterers; they consist of
= terms with even value of n. They are classified as the
boomerang diagrams in Ref. [30]. The simplest example
is =&

rec

@ —r)

rec
No  Na

=ZZ/~-~fak£8(r—r])Go(rl —I‘z)

i=1 Jj=!
J#i

X ak?Go(ry — 13)aki Go(rs — rg)aki8(ry — 1)
x Poy(ry, 12)8(r — r3)8(rs — r')d’ry ... d%rs. (28)

Summing up all the diagrams with recurrent scattering, we
obtain in k space

Srec(K) = (,Oaé)ki Z (aokz)21+1&21+3
=0

x [ / Gy (RHA’R’ + (aok7)a
vaex

x / G§’+3(R’)e—fk'R'd3R/}, (29)
V_Vex

where Ve represents the exclusion volume. There are two
integrals inside the summation. The first integral is associated
with the loop diagrams, while the second integral is associated
with boomerang diagrams. The summations clearly have the
structure of geometric series, making it possible to resum the
infinite number of terms; see Appendix B for the details of
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the calculation. Similar to the case of X ., we approximate
k =~ k;. Evaluating the above integral results in

Yrec 1

— . 2ldmm I 30
e (ko€0)2 (6 +aly), (30)

with

€2y

/OO M1 — (14 2105)62”‘]
Is = .x
x2 (1262’X

min

The integral I is computed numerically using a cutoff on
the upper limit of the integral. We found that a cutoff at
x = 80000 is sufficient for the integral to converge. The nu-
merical integration is performed using an adaptive algorithm
for oscillating integrand.

B. Vector waves

For the case of vector waves, the incident field in the
frequency domain is given by

Ei,(r) = Egexp(—iKk; - r). (32)
The free space Green function is now a dyadic given by [48]
<~ k =4 P
Go(r —1') = _ [B(kelr — F'DP + y (k| —x')U]
I a( ) (33)
——é8(r—r),
3k?

where

2e* (1 1
v =" =+
X X X

and T is the identity dyadic. In contrast with the scalar case
where the Green function has a 1/r divergence at the origin,
the vector wave case contains near field effects with additional
1/r? and 1/r3 singularities.
In the Fourier space, the Green function is given by
j

— _P,- -K (34)

Golk) = =
L

k2

The dyadic K= k ® k/ ki is | the projector along the direction

of k. The dyadic Pk -T-K projects onto the space orthog-
onal to k. The longitudinal part of the Green function (propor-

<>
tional to K) does not propagate much further than one wave-
length. Thus only the transverse component (proportional to

Fk) is relevant for the coherent transmission of light through
a medium much thicker than the wavelength. However, one
must carefully keep the full spatial dependence of the Green
function—including both the longitudinal and the transverse
parts—when computing the effect of position correlations and
recurrent scattering. The average Green function also splits

into longitudinal and transverse components:
<>

— 2,(k)P" K, @35

" 1
(G0 = 12 T2+ 3k

where the dyadic self-energy 3 is also separated into
¥ =K+ 3P, (36)

Comparing the transverse components of Egs. (34) and (35),
which are relevant in the coherent transmission of light,
we have

=14 k_2 (37)
Thus, for a statistically homogeneous and isotropic scattering
medium under consideration here, the relative permittivity €,
in the vector wave case is still a scalar quantity. The self-
energy %, in the vector case, is also given by the diagrams
in Fig. 1, with the same interpretation. Following the case
of scalar waves, we separate the self-energy into three terms
representing the ISA contribution, the positions correlations
contribution, and the recurrent scattering contribution:

Y= ZISA + 2:cor + 2:rec' (38)

1. Independent scattering approximation

Since the diagrams and their interpretations are the same
as in the scalar case, we can write an integral for the ISA
contribution of vector waves, similar to Eq. (19). We get

isa 1 <  Xisa I
— =l — = —a
2 kolo 2 kolo

which is similar to Eq. (20). X, s is the transverse compo-

(39)

nent of §15A~ The ISA relative permittivity is also given by
Eq. (23).

2. Position correlations

For the position correlation contribution, we solve the
dyadic version of Eq. (24), using the dyadic Green function
for vector waves. The details of the calculations are given
in Appendix C. The resulting expression of the transverse
component X; ¢ 1S

z:t cor 1 : 2 1
— = | — ) @ C(dnin), 40
B ( o Ko) @“C(dmin) (40)

where
C(d~min) — 2i + 21d§1m dxfnn 21d§1m
4d311n
20+ ddiin = 2idy, — 3 )e 2idin @
4d311n

It is interesting to note that ¥, cor/ kL is nonzero when dp;, —
0, unlike in the case of scalar waves. In fact,

2:t,cor _ 1 &2
kK (kolo)? 3

when d,i, — 0. This is due to the §(r — r’) term in the free
Green function in Eq. (33) being absent in the scalar case.

(42)
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This term is responsible for the so-called Lorentz-Lorenz shift
[49,50].

3. Recurrent scattering

Similar to the case of scalar waves, the following series has
to be summed for the recurrent scattering contribution:

00
e = Z EEQ, 43)
n=3

<>
where X" is computed from the two recurrent scattering
diagrams having n scattering events. They can be expressed in
the same way as in Egs. (27) and (28), with the dyadic Green

function being used instead. This leads to a dyadic version of
<>
Eq. (29). The transverse component of X... is found to be

~3
z:t,rec 1 o

2 (lol 2 “9
where
;_ f°° 22 [B(x)* + 3@(@)B()*{jo(x) — ji(x)/x}]
o Ja, I — () B(x)?

L y (@) + %é(w)y(xfjl(X)/xdx.

1 — Ja(w)?y(x)? )

Jo(x) and j;(x) are the zeroth- and first-order spherical Bessel
functions. The integral I, is evaluated numerically. Details of
this calculation are given in Appendix D.

III. NUMERICAL STUDIES

A. Setup for the numerical studies

To check the validity of the theoretical expressions, a
numerical study is carried out to simulate the coherent trans-
mission of light through a slab of atomic medium. The relative
permittivity of the medium is extracted from the transmitted
field. In the following, we discuss the coupled dipole method
that is used to perform the simulation. We discuss in detail the
case of scalar waves. The same method is applicable to the
vector waves, with just a few differences. These differences
are pointed out as we encounter them.

The atomic scatterers in our simulations are distributed
randomly within a cylinder of thickness L (see Fig. 2) at fixed
positions. The radius R of the cylinder is chosen such that it
is larger than the thickness L, thereby making sure that the
geometry is as close as possible to a slab. The scatterers are
distributed uniformly with density py within a diameter of 2a
in the plane perpendicular to the propagation axis. Beyond
this distance, the density of the scatterers linearly decreases
until it becomes zero when it reaches the edge of the cylinder.
Configurations where any two scatterers are separated by less
than dp;, are rejected. Within the range of parameters that we
consider, we check that the approximate expression of 4 in
Eq. (2) is valid.

The incident Gaussian beam has a waist of wg. The value of
the waist is chosen to be smaller than the lateral dimension of
the cylinder. The linearly decreasing density close to the edges
of the cylinder reduces the diffraction of the incident beam
at the edges. This also ensures that, along the propagation

p(r)
A

A

Side View

FIG. 2. Setup for the system studied numerically. It consists of a
cylinder of thickness L under normal incidence of a Gaussian beam
laser (waist wy). The probe beam is focused at the geometric center of
the cylinder. The density of the cylinder is distributed symmetrically
around the axis, with two distinct regions. Within a radius a, the
density of scatterers has a uniform value of py. Outside this region,
the density decreases linearly until it becomes zero at the outer
edge. The radial distribution of the density is plotted in the top right
figure. The scatterers are motionless and are distributed randomly
inside the cylinder according to this density distribution. We keep an
exclusion volume of a sphere of radius dy,;, around each scatterer.
The coherently transmitted field is computed on the propagation axis
through the cylinder, at a distance z away from the origin, which is
at the center of the cylinder. The position P, where the coherent field
is computed, ranges from a few wavelengths beyond the outgoing
surface to 500 wavelengths away.

axis, we are always in the shadow of the cylinder. However,
the waist is large enough such that its Rayleigh length, zz =
nwé/AL, is larger than L, where A, = 2m /k; is the laser
wavelength. Thus we have a well-defined direction of the
wave vector along k;, inside the cylinder. The incident beam
is focused at the geometrical center of the cylinder, which is
chosen as the origin of our coordinate system. The incident
electric field for the numerical studies is given by

x2 +y2

Ein(r) = Eo(z) exp(ikr - R) exp [—m
0

} (46)
where z = k;, - r/kg is the distance along the propagation axis
and x, y are the transverse coordinates. E((z) is the amplitude
of the field along the central propagation axis and is given by

Ey(z) = (47)

1 +iz/zg’

For vector waves, the polarizations of the coherently trans-
mitted beam and the incoming beam are identical and can be
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disregarded. Therefore, Eq. (46) remains true for the vector
waves. For the simulation of the vector waves, we choose
for simplicity a linear polarization for the incident field. In
general, the field can be computed at any arbitrary position;
however, we only calculate the field on the propagation axis
(x=0 and y =0). The incident field amplitude Ey(z) is
used to normalize the coherently transmitted field (E(z)) at
a distance z along the propagation axis.

Our theoretical calculation of the relative permittivity as-
sumed a statistically translational invariant system. This ap-
proach is not strictly valid near an interface where the density
varies abruptly. The depth of the skin layer is typically of the
order of 1/k;. If the thickness of the medium is sufficiently
large—such that kL >> 1—the index of refraction can be
taken inside the medium as if it was infinite. Consequently,
the average field in the medium varies like exp(ik,nz), where
the refractive index is given by Eq. (17), n = ,/€;. Because the
refractive index is not unity, there is an index mismatch both
at the ingoing and outgoing interfaces. This leads to partial
reflections of the incoming beam, which can be calculated
using a standard formula [19,51]. The transmitted field from a
slab of thickness L becomes

_ 4n explikp(n — 1)L]
E@NE) = T (i Z 1 expQikinl)
= F(n)expliky (n — D)L]. (48)

From the above equation, it is not straightforward to obtain
the value of n from the numerically calculated value of (E(z)).
Nevertheless, since we are in a regime where the perturbative
expansion in terms of atomic density is valid, we can also
expand F (n) up to second order in the density to find

(E(2))/Eo(z)

1 a 2 .
= [1 T 6 <m> (ekmsal _ 1)] explik,(n — 1)L],

(49)

with niga = 1 4 &/(kolo)/2, the refractive index in the ISA
regime. The equation above can now be solved for n, from
which €, is obtained.

Strictly speaking, Eq. (49) holds only for a slab under plane
wave illumination. Since the parameters for the numerical
studies are chosen to approximate the case of plane wave
illumination on a medium with a slab geometry, Eq. (49) can
be applied in our studies.

Note also that the number of atoms in the cylinder has
to be large, N, > 1, since the theoretical expressions in the
previous section are obtained in this limit.

B. Coupled dipole simulation

The coupled dipole simulation is carried out by solving
Egs. (9) and (10) in the frequency domain. The correspond-
ing vector equations are used when computing the coherent
transmission of vector waves.

The calculation is performed in two stages. The first stage
consists in computing the external fields E(rj) for j =
1,2,...,N,. This is achieved by solving Eq. (10), which is a
coupled linear system with N, equations, to find the N, values
of Ecx(rj). In the case of vector waves, we have 3N, equations

0.61 T T T T m-0.072
0.605 -0.074
0.6 (/ 1-0.076
% 0.595 10078 =
<t
0.59 " 1-0.08
|

0.585 1-0.082

0.58 - - - - 1-0.084
0 100 200 300 400 500

z/AL

FIG. 3. Curves showing the position dependence (along the
propagation axis) of the coherently transmitted intensity /., (blue
solid curve) and the phase difference 6 between the coherent field
and the incident field (red dashed curve). This example is shown for
the vector wave case. The error bars are calculated for all points on
the curves but only shown at selected points. The parameters in the
calculation are kofy = 36.4 and § = 0.5T; see also the text for other
computation parameters.

involving 3N, variables. Once all the values of E(r;) are
known, Eq. (9) is used to compute E (r). The total field E(z)
is computed on the propagation axis through the cylinder by
varying the value of z. By far, the most CPU intensive stage is
the solution of the coupled linear equations, scaling like Nj.

C. Coherent transmission

The calculation described above is repeated for different
independent realizations of the scatterers’ positions inside the
cylinder. The ensemble-averaged field (E(z)) at a point P that
is sufficiently far away along the scattering medium gives us
the coherently transmitted field [see Fig. 3 for one example of
the position dependence of the normalized coherent intensity
Lan(2) = {E(2))/Eo(2)* and phase 6(z) of (E(2))/Eo(2)]-
Close to the cylinder, at a distance comparable to the average
interatomic distance, the calculated field displays large statis-
tical fluctuations.

D. Computational errors

In Fig. 3, we show the statistical error bars at few points
on the curves. We now describe how the error associated with
each point is calculated. The number of configurations used
to compute the coherent field is denoted as Nope. In order to
compute the errors, we divide the number of realizations into
Npar partitions. The mean electric field (E,(z)) is calculated
for each partition. Here, p is the index of the partitions. From
the Neont/Npart Values of averaged fields computed for each
partition, we compute their standard deviation . Similarly,
the phase shift of the transmitted field with respect to the
incident field is also calculated for each partition. The stan-
dard deviation is denoted as o,. The errors are then given by
0f/+/Npart and o,/ /Npart, respectively, for the coherent field
and the phase difference. The error in the values of ¢, is then
calculated by propagating the error accordingly. With large
enough partitions, the error calculated is independent of Npay.
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TABLE 1. Values of ky¢, and pq /kS for the cases studied numer-
ically. The values are tabulated for both the scalar and vector waves.
Here, we set by = 1 and hence L = £.

kolo 0o/ k3 (scalar) po/k3 (vector)
9.1 8.8 x 1073 5.8 x 1073
18.2 4.4 %x 1073 2.9 x 1073
36.4 2.2 x 1073 1.5x 1073

E. Scalar waves

Using the numerical method described above, we study
numerically the coherent light transmission at kpfp = 9.1,
18.2, and 36.4, for the case of scalar waves. In this study, we
set 2R = 35 um, 2a = 22 pum, wy = 4.5 um, N.onr = 3200,
Npary = 40, and doin = 0.455 and the sample thickness L is
1, 2, and 4 um for the three cases studied. The correspond-
ing values of the rescaled density po/kj are summarized in
Table 1. The wave vector used in the numerical simulation
corresponds to the strontium 'Sy — 3P| intercombination tran-
sition, i.e., ko = 9.1 x 10° m~!. This means that the scaled
diameters of the cylinder are 2kgR = 637 and 2kpa = 400.4,
respectively. The scaled waist of the beam is kpwo = 41. The
number of atoms used in the numerical simulation is N, =
4277. With these parameters, we approximate as closely as
possible a uniform slab of density py used in the theoretical
study. Note that the results depend only on the scaled param-
eters: changing the wave vector ky while keeping the same
values of kyR, koa, kowy, koly produces exactly the same set
of equations, and thus the same solutions.

The range of detuning computed in our study is —3I" <
8 < 3I'. For each value of the detuning, we compute the
coherent field. The relative permittivity €, is calculated using
Eq. (49). We first compare the numerical results to the ISA
prediction for the case koly = 9.1 (see Fig. 4). This is the
value where we expect the largest deviation from the ISA

1.06 0.12
1.04 0.1
1.02 0.08

-~ -~

% 1 0.06 ~

= S
0.98 0.04
0.96 0.02
0.94 To

§/T

FIG. 4. Real and imaginary parts of the relative permittivity for
scalar waves extracted from the numerical simulation results (blue
dots and red open circles for real and imaginary parts, respectively).
The ISA prediction for the real part of €, is shown as the blue
solid curve, while the imaginary part is shown as the red dashed
curve. The numerical results are shown only for the case of kyly =
9.1, where deviations from the ISA prediction—although obviously
rather small—are expected to be the largest among the ky¢, values
computed.

0.5 . . . . .
0.4k ¢ —— Theory ]
= 03¢t & ¥ koly =18.2] |
&
I 0.2
X
0.1
(=]
32
= 04
=
e -0.1
0.2
-3 -2 -1 0 1 2 3
§/T
(b)
0.5 . . . . .
04} —— Theory |
~ > D kolo = 36.4
5 03} ¥ kolp = 18.2| |
o T koly=9.1
\
&
&
=
D
<o
=
=
=
=

FIG. 5. (a) Real part and (b) imaginary part of (koo)*(&; — €1sa)
for scalar waves. The theoretical curve is shown as the black solid
line. The numerical results at three different kofy values agree
perfectly with the theoretical prediction.

prediction. At first sight, the numerical results agree very well
with the ISA prediction. However, a close inspection shows
there are indeed small deviations, particularly around é = 0.
In order to better compare our numerical results to the
theoretical prediction, we calculate the scaled second-order
contribution (ko€y)?(¢; — €15 ). This quantity is calculated
from the numerical results and compared to the theoretical
prediction in Fig. 5. We find an excellent agreement between
the numerical and theoretical results. The (kofo)*(€; — €154)
values at different kyf fall on the same curve, meaning that
the dominant contribution after ISA indeed scales as 1/k2€3.

F. Vector waves

For the vector waves, we set 2a =22.5 um (2kgpa =
409.5), 2R =35 pm (2koR = 637), wo = 4.5 um (kowo =
41), Neont = 3200, Npare = 40, and dimin = 0.455 and the cylin-
der thickness is L = 1,2, and 4 um. The corresponding scaled
density of the cylinder is given in Table I, for the three values
of kyfy. Generally, the numerical simulation is performed at
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1.03 : : : 0.06

1.02 40.05

1.01 40.04
—~ -
& 40.03 >
= g
~ =

0.99 40.02

0.98 40.01

0.97 . 0

-2 -1 0 1 2
5/T

FIG. 6. Real part and imaginary part of ¢, for the vector waves
calculated from the numerical simulations at ko, = 18.2. The blue
dots are the numerical results for the real part, while the red open
circles are the imaginary part. The ISA prediction for the real part is
shown as the blue solid curve. The ISA prediction for the imaginary
part is shown as the red dashed curve. The agreement is very good,
but small deviations are visible and studied in Fig. 7.

by = 1 or equivalently koL = ko, with N, = 2897. A case at
by = 2 is also studied, where kgL = 2kolo and N, = 5795. In
Fig. 6, we compare the relative permittivity obtained by the
numerical study at ko€y = 18.2 to the theoretical prediction
using ISA, finding small but significant differences.

1. 1/k24% dependence

We also compare the scaled second-order contribution
(ko€o)? (€ — €15a) of the numerical result to the theoretical
prediction. This is shown in Fig. 7, where the numerically
calculated second-order contributions at kgfy = 9.1, 18.2, and
36.4 are scaled by multiplication with (ky€y)?. Note that the
numerical results for different values of kol agree very well
with each other, confirming the 1/k3¢3 dependence of €, —
€isa- The agreement with the theoretical curve is not perfect,
with small deviations visible in the real part at negative
detuning and in the imaginary part at small positive §/I".
Overall, the agreement is very good and the theoretical predic-
tion nicely reproduces the complicated frequency dependence,
validating the theoretical approach.

The discrepancy between the numerical result and theoret-
ical prediction is larger for kofp = 18.2 at certain values of §
especially around §/T" = 0.25. It seems unlikely to come from
correction terms proportional to 1 /kgﬁg. The actual cause of
this discrepancy remains to be understood. One reason could
be the failure of the bulk approximation in our numerical
studies, since we are using the bulk permittivity for a medium
where the thickness is not much larger than the wavelength
of the light. In the scalar case, the asymptotic expression
of the Green function is in fact valid at any distance [see
Eq. (6)]. In the vector case, we speculate that corrections at
short distance [see Eq. (34)] might lead to a less accurate bulk
approximation.

2. Optical thickness

To check for possible finite-size effect, we study the depen-
dence of the second-order contribution with the thickness L.

(a)

0.4 T T T
—— Theory 3
: 031 @ k’ofo =36.4 . 7
0.2 T kbo=91
\
= 0.1
[}
=
5
s ot |  Teum
=
O
A0l
_02 1 1 1
-2 -1 0 1 2
5T
(b)

Im{(kolo)* (e, — €15) }

FIG. 7. (a) Real part and (b) imaginary part of (ko€o)>(€; — €1sa)
for the case of vector waves. The theoretical curve is shown as the
black solid curve. Numerical results are shown for three different
kol values indicated in the legend.

To do this, we compare the relative permittivity at the same
value of kyply = 18.2 for two different values of the optical
thickness by = L/{y; that is, by = 1 and by = 2. The results
are depicted in Fig. 8, showing good agreement between the
two cases. Hence the thickness used in the numerical simula-
tion is sufficiently large and finite-size effects are not impor-
tant. The excellent agreement between theory and numerical
studies in the case of scalar waves, where the geometry of the
cylinder is similar, adds further weight to this conclusion.

3. Size of the exclusion volume

We also investigate the effect of the size of the exclusion
volume in the case kofyp = 18.2. We numerically study the
case of do;, = 0.0455, where the radius of exclusion volume
is one order of magnitude smaller than the results presented
in Fig. 7. The exclusion volume is thus three orders of
magnitude smaller. In Fig. 9, the values of €, for diin = 0.455
and d;, = 0.0455 are compared. The results show that the
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(a)
0.4 . . .

< < =
— (V] w

o

Re{(kof)* (er — e1sa)}

(b)
0.1 . . .

Im{(kol)? (e — €1sa)}

FIG. 8. Numerical results for vector waves and for the case of
kolo = 18.2 at optical thickness by = 1 (blue open circles) and by =
2 (red stars). The theoretical prediction of (ko€y)*(€; — €1sa) is shown
as the black solid curve.

smaller exclusion volume does not significantly affect the
numerical and the theoretical results.

IV. CONCLUSION

We have computed the relative permittivity of a bulk
atomic cloud at zero temperature under illumination by a weak
probe beam, beyond the ISA. Using a diagrammatic represen-
tation method, we have identified all diagrams that contribute
to the self-energy up to second order in 1/ky¢y. The first-order
term in the self-energy gives rise to ISA, which is a good
approximation for dilute scattering media. The second-order
terms originate from the pairwise correlation in the position of
the scatterers, and from the recurrent scattering between two
scatterers, which includes the well-known Lorentz-Lorenz
shift. We have separately computed the contributions from
ISA, position correlation and recurrent scattering, for both the
cases of scalar and vector waves.

—
=

Im{(/{?()é)Q (Er — EISA)}

FIG. 9. Numerical results for vector waves at kyfy, = 18.2, with
normalized cutoff radii of d.;, = 0.455 (blue open circles) and
doin = 0.0455 (red stars). The theoretical curve for dopin = 0.455 is
shown as the black solid curve and the curve for dy;, = 0.0455 is
shown as the red dashed curve.

This perturbative expansion method can be useful to study
nontrivial pair correlations. In Ref. [41], the experimental
measurement of the refractive index for a Bose gas was com-
pared with two different models of bosonic pair correlation
functions [52], one for an ideal Bose gas and the other one
calculated with the Hartree-Fock approximation. A similar
study could be carried out for Fermi gases.

From our calculations, we find that the peak optical thick-
ness is shifted to the blue by 1.66pk, I" and 6.56pk,"T,
for the scalar wave and vector wave cases, respectively. A
blueshift was also reported in Ref. [29], for the case of quasi-
2D atomic layers.

The theoretical results are then compared with numerical
studies on finite-sized systems that approximate as closely
as possible the infinite ideal slab geometry, with k¢¢y val-
ues down to 9.1. The agreement between the numerical and
theoretical results is almost perfect for the scalar waves. In
the case of vector waves, the overall agreement between
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the numerical and theoretical results is very good, although
differences exist. Further work is needed to understand these
differences. Finally, our theoretical framework and numerical
tools can be easily extended to study the effect of the atomic
motion on the coherent transmission of light beyond the ISA.
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APPENDIX A: CALCULATION OF X,
FOR SCALAR WAVES

Starting from Eq. (24), we perform the integrations and
summations to find

Since N, > 1, we can make the approximation that N,(N, —
1)~ Nf. The self-energy in k space is given by the following
Fourier transform:

Teor(k) = p*a’k} / Go(R)A(R) exp(—ik - R)d’R’, (A2)

where R' =r — r’. Putting in the pair correlation function
from Eq. (2), it is reduced to the following integral over the
exclusion volume Vy:

Teor(k) = —p?a’k} f Go(R")exp(—ik - R)HA’R’.  (A3)

The scalar Green function does not contain any angular de-
pendence; therefore, it is possible to first carry out the integral
over the solid angle, leading to

dni . A /
min exp(—ik,R") sin kR

Seor(K) = —p2a?k} /

cor( ) P UKy o R kR’

We now make the on-shell approximation to put k &~ k;. We
then perform the integration to arrive at Eq. (25).

R*dR'. (A4)

APPENDIX B: CALCULATION OF X,
FOR SCALAR WAVES

In close analogy to Egs. (27) and (28), we can write =) for

rec
general values of # in the configuration space. In the Fourier

Na Na - 1 .. .
Teor(r —1') = %Go(r —r)h(r —r'|). (Al)  space, this is given by
J
Gy '(R)[1 + h(R)]d*R/, odd n,
E1{30)(1() ( kz) f 1( /)[ ( )] / 3/ ! (Bl)
[ Gy~ (R)H[1 + A(R")]exp(—ik - R")d°R’, evenn,
for n > 3. We have used the fact that Go(R") = Go(—R"), which is also true for the dyadic Green function in the vector case.

Note also that N, (N, — 1) ~ N? for large N,. Summing up %%

rec

Eq. (29).

and putting in the pair correlation function of Eq. (2), we obtain

To proceed from Eq. (29), we first carry out the angular integration, with the on-shell approximation, to obtain the following

equation:

o0

[o.¢]
Sree(k) = 47 (po)’k Y (aok?) 2’”[ /
d

1=0 ‘min

Gy (RHR?AR' + (awok; )& /

kR’
G””(R/)SlIl /zdR] (B2)

dmin

We also make the approximation k; = ko, for § <« . Thus apk; = 47, allowing us to simplify the equation and find

1=0 dmin

Erec 4 o0 t(2l+2)x
k? (koﬁo)2 Z /

) s [ £i2+3)x
~ + .
x + E a /: i sinxdx |. (B3)
1=0 min

Here, we have a summation of infinitely many integrals. The first integral proportional to & can be computed analytically,

o
2ix)dx = li
/~ . exp(2ix)dx ) E{ﬁ

exp[(2i — n)x]dx, (B4)
dﬂ“"

which evaluates to the value i exp(2idpin)/2 for n > 0. After reorganizing the summations, we have

Zrec l

00
— 2ldmm 21+1
kf " (koto)? 2 |: g(; / o

6(21+2)ix

(&)
lede—(l—}-Zla)Z I+l/:
=0

e(Zl+4)ix

dmin

Finally, to obtain Eq. (30), we interchange the order of the summation and the integration in the above equation.
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APPENDIX C: CALCULATION OF ﬁcor FOR VECTOR WAVES

As discussed in the text, we have to use the dyadic version of Eq. (A3) to compute (fcm, which is
Feor(K) = —pa?k? / Go(R) exp(—ik - R)d°R. (C1)
VCX

Putting in the dyadic Green function for vector waves,

N k o g k Y T
Teor(k) = —pzazki[ﬁ / B(k R )P e kR d3R/+ﬁ / y (ke RHU e *R 3R — / 3k23(R/) —’de*R/] (C2)
Vex Vex Vex

The last term can be computed easily using the properties of the Dirac delta function,

<> <>

I I
—S(R)e *R PR = C3
/Vex 3k2 (R')e 32 €3

Before we proceed to evaluate the two integrals involving (k. R’) and y (k. R'), we note the followmg results for the integration
of P and U over the solid angle 2. These relations are useful in the computation of Zcor and Erec

/ Udo =4?”‘f, (C4)
81 <
f Pd=—-1. (C5)
¥ _ikR . J1(kR) jl(kR) <
er dQ=dm= I+[4 Jjo(kR) — o }K (C6)
fPe”k‘RdQ =[4ﬂjo(kR) - ]IIER )]I - [4ﬂjo(kR) ]l,(CR )}K- €7

Using these, we can perform the angular integration over the solid angle of Eq. (C2). The following transverse component of the
mass operator is what matters to us here:

2 2k2 din dinin kR i(kR') — i1 (kR'
Zeonll) = E5E —pzazki[ / y o RYIEED o g [ iy RIERD — 11 (KR
0

kR’ ) kR’

R? dR/] (C8)
Applying the on-shell approximation and evaluating the remaining integral over R’ leads us to Egs. (40) and (41).

APPENDIX D: CALCULATION OF %m FOR VECTOR WAVES

1. Derivation
In order to calculate %rec, we consider the following equation, which is the dyadic version of Eq. (29):

o]

has 20+1
e (k) = (pto)’ki Y (etoky) *‘a”“[ f
\4

6(2)]+2(R/)d3R/ + (Olokz)& / ((_);(2)1-4-3 (R/)e—ik<R/d3R/i| . (Dl)
1=0 _Vex V_Vex

<> <>

ﬁ and P being orthogonal projectors, one has 62 =U, P’ = F, and ﬁ(ﬁ = (I_’Ml_j = 8 It then follows that the nth power of the
vector Green function is given by

pxd k ! <« P
Gy(R) = (ﬁ) [B" (ki R)P + y" (k. R)U]. (D2)
We have neglected the Dirac delta term in ((_”;, since the integration over the volume V — V., excludes the origin. The above

relation is substituted into Eq. (D1). An integration over the solid angle is first performed, making use of Egs. (C4) to (C7). The
transverse component of the result is given by

© ok 20+1 1 o
Zrree(K) = P2tk ) <%> &ZIH[?/ 2872 (LR + v 2 (kL ROIR AR
=0 dmin

Olok3 / B (R R/jo(kR/)—jl(kR/)R/z AR + 2ok aok;

* (kR')
kR/ 47[ / ,}/21+3(kLR/)-]1 R/2 dR/] (D3)

dmin ‘min
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We then assume that k ~ k; and define x = k; R’. For vector waves, aokz = 6m, assuming ko =~ kg . This leads us to

oo 3 21+1 1 00
Et,rec =p2a§k12‘ Z <_> &21+3{§/: [2[321+2(x) + y21+2(x)]x2 dx

2
1=0

+ %a f BH T ()X [o(x) — Jji(x)/xdx + %a /
dinin

yH 3 o i (x) dx}. (D4)

dimin

Next, we interchange the order of integration and summation to arrive at Egs. (44) and (45).

2. Numerical integration

A numerical integration is performed to compute /,. The same numerical algorithm used for the scalar case is also used for

the vector waves. First, I, is separated into two parts

L=1I +1", (D5)

with a large value of M. One part is given by the following integral:

M /M 2% [B(x)* + Ja(@)Bx) o (x) — j1(x)/x}] L Y ()% + Ja(w)y (%) ji(x)/x

T 1 — Ja(w)2B(x)>?

D
R FRTTECE (bo)

which is calculated numerically using the adaptive algorithm. The value of M is set at 10 000. The remaining part I, can be

computed analytically for large value of M, giving

I~ lim 22 dx = i exp(2iM). (D7)

n—>0% Jy

The final result is of course almost independent of the intermediate M value.
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