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Quantum coherence of light emitted by two single-photon sources in a structured environment
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We develop a theoretical framework for the analysis of the quantum coherence of light emitted by two
independent single-photon sources in an arbitrary environment. The theory provides design rules for the control
of the degree of quantum coherence in terms of classical quantities widely used in nanophotonics. As an important
example, we derive generalized conditions to generate superradiant and subradiant states of the emitters and
demonstrate the ability of a structured environment to induce long-range quantum coherence. These results
should have broad applications in quantum nanophotonics and for the sensing of fluorescent sources in complex

environments.
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I. INTRODUCTION

The ability to change the dynamics of quantum emitters
by structuring the electromagnetic environment has been the
early motivation of cavity quantum electrodynamics [1-3],
has inspired the development of photonic crystals [4], and
has become a major goal in nanophotonics, in which cavity
or antennas concepts have been downscaled to the nanometer
range [5]. Beyond changing the dynamics of isolated emit-
ters, which is chiefly driven by the local density of states
(LDOS), controlling the interactions among an ensemble of
quantum emitters with nanostructures is a central issue in the
emerging field of quantum nanophotonics [6—11]. Using a
nanostructured environment to drive the quantum coherence
of the light emitted by two (or more) single-photon sources
would be a major step forward in many areas, including the
treatment of quantum information in integrated photonics [12]
and the control of collective emission [13—15] and absorption
for the design of novel efficient light sources and absorbers.
Establishing a clear connection between the degree of quantum
coherence of the emitted light and the local environment of the
emitters could also stimulate new strategies for the detection
of sources in complex media (such as biological tissues),
along the lines initiated in Ref. [16] for classical sources. It
would also improve the understanding of the role of quantum
coherence in photosynthetic light-harvesting systems, an issue
of high current interest [17-19].

In this article, we study the second-order quantum coher-
ence of light emitted by two independent single-photon sources
in an arbitrary electromagnetic environment. We establish
a general theoretical framework, in which design rules for
the control of the degree of quantum coherence naturally
emerge. As an important example, we derive the conditions
for the observation of subradiant and superradiant states. In
the case of a detection integrated over all output channels, the
photodetection correlation functions are expressed in terms of
the local and cross densities of states of the electromagnetic
field, allowing a direct connection to classical quantities widely
used in nanophotonics.
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II. GEOMETRY AND PHOTODETECTION SIGNALS

We consider two single-photon emitters located at positions
r; and r; in an arbitrary environment. The emitters are modeled
as quantum two-level systems, with the same transition energy
hw and transition dipoles p; = pl(afr +o0,)u; and p =
pz(a;r + 0, )up, where o* are atomic raising and lowering
operators [5] and u; and u, are fixed unit vectors. The
two emitters are assumed to be noninteracting, so that the
quantum states of the ensemble are product states (such as
leg) = |e)1 ® |g), when emitter 1 is excited and emitter 2 is in
the ground state).

We first assume a photodetection scheme using two de-
tectors at positions r, and rp, as sketched in Fig. 1(a). The
detectors select photons with polarization states o, and o,
corresponding to the projections of the electric field along
the unit vectors e, and e;. The positive-frequency component
of the electric field operator can be connected to the source
operators using the electric Green’s function:

EM(r) = noo’[pio; G(r,ry) -u; + proy G(r,ra) -wpl. (1)

Here the Green’s function G is evaluated at the angular
frequency @ and contains all the information about the
surrounding environment [S5]. For simplicity we introduce
the simplified notations E, =e, - EM(r,) and G, =e, -
G(r,,r;) - u;, which describe quantities measured at detector
a (and similarly for detector b). The photodetection of one
photon at position r,, with polarization state «,, is described
by the operator ®,(r,,«,) = E,‘l E,, where the dagger corre-
sponds to the Hermitian conjugate. In the particular case of
two emitters in the excited state, the probability to detect one
photon at position r,, with polarization «,, is given by the
expectation value

(®1(rs,00)) = (o) [|p1Gatl* + | P2Gaal?l,  (2)

which includes two independent contributions from each emit-
ter, as expected for independent sources. The photodetection of
two photons at positions (r,,r;), with respective polarizations
(otq,00p), 1s described by the operator ®@,(r,,q,,rp,0p) =
El E; E,E,. When the two emitters are in the excited state,
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FIG. 1. Photodetection geometry. (a) Two quantum emitters are
located at positions r; and r, inside a structured medium, and
polarized detectors are located at positions r, and r,. (b) Integrated
photodetection where the photodetection signals are integrated over
all directions and polarizations.

its expectation value

(®2(ry, 0, Th,05)) = (10w [p1pal®

X |Gu1Gp2 + GuaG | 3)

gives the joint probability to detect one photon at position
r, with polarization «, and one photon at position r, with
polarization oy,. This expression differs from a simple product
of single-photodetection probabilities as it contains terms such
as G,1 G}, G}, Gpa, which correspond to intensity interferences
between the contributions of the two sources. In the case of
close classical emitters and close detectors in vacuum, these
terms reduce to the cosine of phase differences, which are at the
origin of the Hanbury Brown—Twiss effect [20]. The intensity
interferometry scheme presented here can thus be interpreted
as a generalization of this effect to quantum emitters in a
structured photonic environment.

As a measure of the degree of quantum coherence of
the emitted light, we introduce the second-order correlation
factor [21]

8P (g, 000, 1p,0)
(@a(ry,0tq,Tp,0p))
(@1(rg,aq)) - (Pi1(rp,ap))
_ 1P122121G a1 Gy + GG |2
~(Up1Gal? + 1p2G a2 p1Git | + [p2G )

“)
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One can easily verify that 0 < g (r,,a,,1p,05) < 1, meaning
that for any positions of the detectors, the single-photon
nature of the quantum emitters yields an antibunching be-
havior [22,23], regardless of the photonic environment [i.e.,
whatever the value of the Green’s functions in Eq. (4)]. This
result is different from that derived for incoherent classical
emitters in Ref. [16], where an autocorrelation factor (for
r, =r, and o, = o) with values between 1 and 3/2 was
obtained. This shows that the second-order correlation factor
can reveal the quantum nature of the emitters, independently
of the photonic environment.

From Eq. (4), it is interesting to look for the conditions
under which g® reaches its extremum values. One gets a maxi-
mum correlation g = 1 when |pi[*Gu1G, = |p2|* G2 Gy,
which can be split into two conditions on amplitudes and
phases:

1P11%1Ga1Gpil = |p2*|GaaGial, ®)
arg(G,1Gpr) = arg(G,2Gp). (6)

The first condition (5) states that the efficiency to reach the two
photodetectors has to be the same for both emitters (each side
can be understood as a geometrical average of the probabilities
to send a photon to each detector). Interestingly, this condition
can be fulfilled even in an asymmetric configuration, for
instance, with the first emitter well connected to r, and the
second emitter well connected to rj,. The second condition (6)
states that for the two possible scenarios giving rise to two
measured photons, the accumulated phase shift must be the
same in order to generate constructive interferences between
the contributions of the two sources. Conversely, the condition
to get g® = 01is

Gu1Gpy + GGy =0 @)

and does not depend on the amplitudes |p;| and |p| of the
two emitters. Indeed, the condition simply states that the
two possible scenarios for double photodetection must have
the same amplitude and opposite phase to reach destructive
interferences.

III. DETECTION-INDUCED COHERENCE

The conditions maximizing or minimizing the degree
of quantum coherence can be understood from a different
perspective by studying more specifically the correlations
between the two photodetection processes. This provides an
interpretation of the appearance of quantum coherence and
useful rules for the engineering of the photonic environment
in order to generate superradiant and subradiant states of the
two quantum emitters.

Since (®,(r,,o,,rp, o)) is the joint probability to detect
one photon at r, with polarization «, and one photon at r;, with
polarization o, starting from state |ee) with two excitations, it
can be rewritten as the product of the probability to detect one
photon at r, with polarization ¢, by the conditional probability
to detect one photon at r;, with polarization «;, knowing
that the first photon has already been detected. In terms of
expectation values, this reads

(@2(ra,0ta,Tp,0p)) = (P1(Xa,ta)) - (Wa| R1(rp,p) W),  (8)
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where |W,) is the state of the emitters after the measurement
of the first photon. The projection realized by this first
photodetection on state |ee) yields |\W,) o E,|ee), which after
normalization leads to

_ n1Galge) + p2Gaoleg)
VIP1Gat I* +1p2G a2

This state is a superposition of two states with only one
emitter in the excited state, with amplitudes and phases
determined by the transition dipole amplitudes p; and p; and
by the propagation from each emitter to the position of the
photodetector at r, (described by the Green’s functions G
and G,»,). Starting from state |ee), the first photodetection event
has generated correlations between the two emitters since it
is not possible to know which source emitted the measured
photon. Note that the superposition can be substantially
unbalanced, due to different transition dipoles or propagator
(Green’s function) weights. The correlation factor defined in
Eq. (4) can then be rewritten as
(Wa |1 (rp,005)|Wa)

() _
8 (raaaaarh»ab) - < 1» (10)
(ee| @ (rp,0)|e€)

|Wa) €))

which enables us to give a physical picture of the antibunching
behavior. Indeed, the ratio in Eq. (10) now reads as a measure
of the constraints induced by the first measurement on the
second detection. There are two distinct constraints: First,
the loss of one excitation reduces the expectation value for the
second photodetection event. Second, the first measurement
induces coherence between the two sources, which produces
constructive or destructive interferences influencing the second
photodetection. Getting a ratio lower than 1 means that
constructive interferences cannot overtake the loss of one
excitation. The first measurement thus always reduces (or
keeps unchanged, at best) the probability to detect a photon
at r, with polarization «;, whatever the relative amplitudes
and phases in the superposition state (9) produced by the first
photodetection.

In this framework, the conditions (5) and (6) leading to
the maximum correlation factor g = 1 can be understood
as requirements for the coherence between the emitters
to generate perfect constructive interferences. When these
conditions are fulfilled, the loss of one excitation is completely
compensated by the optimal correlation between the sources.
This is the mechanism at the origin of the phenomenon of
superradiance [24,25], which in free space is observed only
for emitters in close proximity. Equations (5) and (6) actually
provide generalized conditions to generate a superradiant
state for emitters in an arbitrary photonic environment. In
particular, superradiance can be obtained for distant emitters,
provided that the structure of the photonic modes (described
by the Green’s function in our formalism) is able to satisfy
these two conditions. Similarly, the condition (7) leading to
2@ = 0 ensures that destructive interferences are maximized.
Consequently, the measurement-induced coherence between
the sources suppresses emission towards the second photode-
tector. The system can be considered in a subradiant state, as
the emission vanishes after the first photodetection event. In
summary, conditions (5), (6), and (7) provide rules to engineer
the photonic environment (the Green’s function) in order to
control the degree of quantum coherence of single-photon
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emitters, up to the generation of superradiant and subradiant
states.

IV. PHOTODETECTION OVER ALL OUTPUT CHANNELS

We now define the operators obtained after integration
of the single- and double-photodetection operators over all
possible directions and polarizations (or, more generally, over
all possible output channels, e.g., in a waveguide or cavity
geometry):

EpC
P = 7/3 dr, aZd)l(ra,aa), (11)
&oC 2
Py = (%) / dr, / dr, Y ®y(re.q.rpp).  (12)
M Sp ,h

The prefactors are used to define observables corresponding to
radiated power. These operators involve angular integrations of
products of two Green’s functions, which simplify into imag-
inary parts of Green’s functions in the case of a nonabsorbing
medium (a similar calculation with classical sources is found
in Ref. [16]). Assuming the two emitters in the excited state,
the probabilities to detect one or two photons over all output
channels take the simple form

MOCU3 2 2
(P1) = 2 (Ip11"ImG 1y + | p2| ImG2y), (13)
2 6
_ M@ 2 2
(P) = > [p1p2|"ImG 11 ImG 2y + (ImG1)°], (14)

where we have used the simplified notation ImGjx =u; -
Im[G(r;,r)] - u; and the equality ImG, = ImG»;, which is
a consequence of reciprocity. The one-point imaginary part of
the Green’s function ImG ; is proportional to the LDOS, which
counts the contribution of modes at a given point r;, while the
two-point imaginary part ImG j; is proportional to the cross
density of states (CDOS), which describes intrinsic spatial
coherence between points r; and ry [26]. The one-photon
detection probability (13) can be split into two independent
components relative to each emitter, with weights proportional
to the corresponding LDOS, as expected. Conversely, the
two-photon detection probability (14) contains two different
contributions: While the term with a product of LDOSs
describes the emission of one photon by each dipole without
interaction, the product of CDOSs accounts for interferences
between the two emission processes.

A generalized correlation factor G = (P,)/(P;)* can be
defined for measurements integrated over all output channels
and reads

@ _ 2lp1p2PImG 1 ImG o 4+ (ImG 15)?]
(Ip11PImG1; + | p2|* ImGay)?

Since the inequality [ImG ;| < o/ ImG 14/ ImGy; is satisfied
(see the Appendix for a derivation), we have 0 < G® < 1,
showing that the antibunching behavior is conserved after
integration over all output channels. This is also different from
the classical case, for which the correlation factor (defined
as the ratio between averaged emitted power and power
fluctuations) takes values between 1 and 3/2 [16].

g (15)
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Similar to the case of local photodetections, conditions
for the generation of superradiant and subradiant states can
be derived for the output-channels-integrated photodetection
scheme by looking at extrema of the correlation factor
G®. Superradiant states, which make possible G = 1, are
obtained under the conditions

|p1’ImG 1y = | p2|* ImGas, (16)

(ImG1y)* = ImG,ImGyy, (17)

showing that the two emitters must have the same emissive
power, and the CDOS connecting their positions has to
be maximum (meaning that the two sources have to be
highly connected by the photonic modes supported by the
structured environment [26]). Although in free space this
second condition is satisfied only for sources separated by sub-
wavelength distances, in a structured environment this range
can, in principle, be arbitrary large. Conversely, subradiant
states producing G® = 0 are generated when |p;|*’ImG; and
| p2)2ImG» have very different magnitudes, and ImG, >~ 0.
These conditions mean that the two sources must have very
different emissive powers and must be weakly connected by
the mode structure of the photonic environment. Unlike in
free space, these conditions can be satisfied even for emitters
at subwavelength distances.

To illustrate these results, we have calculated numerically
the correlation factor G@ in a medium structured at the
nanoscale and made of dipole scatterers with random positions.
For simplicity, the calculation is performed in two dimensions
for transverse electric polarization and in the diffusive regime
(the system is similar to that studied in Ref. [27], in which
details on the numerical approach are given). Solving the
linear system on the scatterers’ dipole moments for a given

0.9
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FIG. 2. Correlation factor G plotted as a function of the position
of an emitter scanning across the medium, while the other emitter is
fixed at the origin (dark cross). Red (blue) colors indicate positions
for which superradiant (subradiant) emission is obtained. Black
dots show the positions of the scatterers constituting the disordered
medium. The scattering cross section and the density of the scatterers
are chosen to get multiple scattering in the diffusive regime. Emission
wavelength A = 698 nm.
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emitter gives the total electric field in the whole system,
which enables us to compute the LDOS at the position
of the emitter as well as the CDOS with other positions.
A map of the obtained correlation factor G is shown in
Fig. 2 versus the position of one emitter scanning the image
range while the other emitter is kept at a fixed position at
the center. As expected, G? varies between 0 and 1 and is
maximum at the origin, as conditions (16) and (17) are both
fulfilled for emitters very close to each other. We observe
large values (G?® ~ 0.8) even for distant emitters due to the
complex underlying photonic mode structure that allows the
conditions above to be almost satisfied even at large distances.
We also observe low values (G® ~ 0) in the near field of
the scatterers, as the modification of the LDOS they generate
yields an unbalanced emissive power, which greatly reduces
the possibility of coherent emission. This simple numerical
example illustrates the substantial influence of a structured
environment on the degree of quantum coherence of the light
emitted by two independent single-photon sources.

V. CONCLUSION

In summary, we have developed a theoretical framework
to describe the influence of a structured environment on the
degree of quantum coherence of light emitted by two indepen-
dent single-photon sources. The analysis provides design rules
for the control of the degree of quantum coherence, in terms of
classical Green’s functions, LDOS, and CDOS. In particular,
we have established general conditions for the observation of
subradiant and superradiant states. The ability of a structured
environment to induce long-range coherence, or, conversely
to inhibit coherent emission even for subwavelength distances
between the emitters, has been illustrated numerically for a
simple example. The general results presented in this article
show how technological advances in classical nanophotonics,
such as Green’s-function and density-of-state engineering,
can be adapted to the control of the degree of quantum
coherence. As a consequence, these general design rules
should have broad applications in the emerging field of
quantum nanophotonics and could suggest new approaches
for sensing fluorescent sources in complex media.
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APPENDIX: CDOS BOUNDED BY THE LDOS

In this Appendix we demonstrate a Cauchy-Schwarz-like
inequality for the CDOS and the LDOS regarding the positions
and orientations of the emitters,

ImG1,| < vImG11/ImGy,

where ImG  ; is defined as before and is proportional to the
LDOS for j = k and to the CDOS for j # k.

(AL)
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We consider two classical dipoles located at ry,r, with ori-
entations u;,u; and amplitudes pi, p, as continuous harmonic
sources for the electromagnetic field. The time-averaged power
emitted by the two dipoles is a positive quantity that can be
written as

(P)r %Im[pf "E(r) + p} - E(ry)]

’;
Mo
5 [|p1 1 ImG 1 + | p2|*ImGa,

+2Re(p] p2)ImG 2], (A2)
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where E is the classical electric field generated by the two
dipole emitters. In the particular case where the two emitters
are in phase with p, = Ap;,A € R, the power emitted can be
written as

o’ | pi|?
2

which must be a positive quantity for any value of A.
The determinant of this second-order polynomial in A must
therefore be negative, which yields

|ImG12| < vV ImG“ImGzz. (A4)

(P)r [(ImG1; + A*ImGy; + 2AImG 3],  (A3)
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