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Foreword

These lecture notes of the course on Waves in Complex Media given at ESPCI Paris-PSL
summarize the basic concepts and the technical developments. They do not include the many
examples and applications that are discussed all along the lecture.

The lecture assumes that the reader has basic knowledge in wave physics (electromagnetic
waves, acoustics, optics, propagation and diffraction).

As additional reading, the reader wishing to deepen the course can rely on the following
reference, which naturally completes the presentation:

R. Carminati and J.C. Schotland, Principles of Scattering and Transport of Light (Cambridge
University Press, 2021).
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Chapter 1

Basic concepts in scattering theory

In this chapter we introduce the basic concepts used to describe the scattering of a monochro-
matic wave by a heterogeneous medium occupying a finite volume. We deal with scalar waves,
that are used in most of the lecture. Scalar waves are found, for example, in acoustics or quan-
tum mechanics. They also provide an approximate description of optical phenomena when the
influence of polarization is negligible.

1.1 Formal description of a scattering problem

We consider the scattering of a monochromatic wave E0(r, t) = Re[E0(r) exp(−iωt)], with
complex amplitude E0(r) and frequency ω, incident on a heterogeneous medium, as sketched
in Fig. 1.1.

E0

Es

Zu
q

L
<latexit sha1_base64="V3fc0LbnUuBTypevOfWnhNqKRXA="></latexit>

Figure 1.1: Geometry of the scattering problem. A heterogeneous material (scattering
medium) is enclosed in a volume with typical size L.
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14 CHAPTER 1. BASIC CONCEPTS IN SCATTERING THEORY

The scattering medium fills a finite volume (with typical size L) and is described by its dielectric
function ε(r) that can be complex valued, with the imaginary part describing absorption.

1.1.1 Scattered field

The complex amplitude E(r) of the total field (the field in the presence of the scattering
medium) obeys the Helmholtz equation

∇
2E(r) + ε(r) k2

0E(r) = −s(r) , (1.1)

where s(r) is the source of the incident field (the minus sign being chosen for later convenience)
and k0 = ω/c = 2π/λ with λ the wavelength in free space. The incident field obeys the
Helmholtz equation in free space

∇
2E0(r) + k2

0E0(r) = −s(r) . (1.2)

Defining the scattered field as Es = E − E0, we immediately find that it satisfies

∇
2Es(r) + k2

0Es(r) = −k2
0[ε(r) − 1] E(r) . (1.3)

To simplify the notations, we introduce the scattering potential V(r) = k2
0[ε(r)−1], and rewrite

Eq. (1.3) as

∇
2Es(r) + k2

0Es(r) = −V(r) E(r) . (1.4)

Using V(r) makes the formalism suitable for the description of different kinds of waves.

1.1.2 Integral equation

We will now show that the solution to Eq. (1.4) obeys an integral equation. To proceed,
we introduce the free-space Green function G0 that satisfies the Helmholtz equation with a
delta-function source term:

∇
2G0(r, r′) + k2

0 G0(r, r′) = −δ(r − r′) . (1.5)

In three dimensions, the solution satisfying the outgoing wave condition is1

G0(r, r′) =
exp(ik0R)

4πR
(1.6)

1It is common to choose the outgoing Green function, which corresponds to the retarded solution in the
time domain.
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with R = |r − r′|, and represents a diverging spherical wave centered at r′. Using the Green
function, the incident field can be written as

E0(r) =

∫
G0(r, r′) s(r′) d3r′ . (1.7)

This expression can be understood intuitively as a linear superposition of the radiation emitted
by each point of the source. The fact that E0(r) given by (1.7) is a solution to the Helmholtz
equation can be checked by inserting (1.7) into (1.2) and by making use of Eq. (1.5).2 Likewise,
the solution to Eq. (1.4) can be written

Es(r) =

∫
G0(r, r′) V(r′) E(r′) d3r′ . (1.8)

The total field is obtained by superposition:

E(r) = E0(r) +

∫
G0(r, r′) V(r′) E(r′) d3r′ . (1.9)

This integral equation satisfied by the total field E(r) is known as the Lippmann-Schwinger
equation.

1.1.3 Far-field asymptotics

At large distance from the scattering volume, the expression of the scattered field can be
simplified using the far-field approximation. For a large observation distance r = |r|, we can
use the expansion

|r − r′| ' r − u · r′ , (1.10)

where u = r/r is the unit vector defining the observation direction (see Fig. 1.1). This leads
to the following first-order asymptotic expansion of the Green function

G0(r, r′) '
exp(ik0r)

4πr
exp(−ik0u · r′) , (1.11)

which is valid provided that the conditions r � L and r � L2/λ hold, with L the size of the
scattering volume. Using this expansion in Eq. (1.8), we find that the scattered field in the
far zone takes the form

Es(r) = A(u)
exp(ik0r)

r
, (1.12)

2Here we favor an intuitive approach, with the Green’s function seen as a linear impulse response. Equa-
tion (1.7) can be established formally using the second Green identity, see for example [1] (chap. 5) or [2].
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with A(u) the scattering amplitude given by

A(u) =
1

4π

∫
exp(−ik0u · r′) V(r′) E(r′) d3r′ . (1.13)

When the incident field is a plane wave with complex amplitude E0(r) = A0 exp(ikinc ·r), where
kinc is the incident wavevector satisfying |kinc| = k0, it is useful to introduce the normalized
scattering amplitude S(u) = A(u)/A0, and write the scattered field in the far zone as

Es(r) = S(u) A0
exp(ik0r)

r
. (1.14)

The scattering amplitude S(u) defined this way is independent of the amplitude of the incident
plane wave.

1.2 Energy conservation and optical theorem

1.2.1 Energy current and absorbed power

We assume that the scattering medium fills a volume V enclosed by a surface S. Using
Eq. (1.1) in volume V (with s(r) = 0 since the source is outside the scattering volume), we
can show that

E∗ ∇2E − E∇2E∗ = −k2
0(ε − ε∗) |E|2 , (1.15)

which can also be written3

∇ · [E∗ ∇E − E∇E∗] + 2i ImV |E|2 = 0 . (1.16)

This equation takes the form of a conservation law. Let us define the energy current J by

J =
1

2ik0
[E∗∇E − E∇E∗] , (1.17)

where the normalization is chosen so that for a plane wave we simply have |J| = |E|2. The
energy current plays the same role for scalar wave as the Poynting vector for electromagnetic
waves (note the similarity with the definition of the probability current in quantum mechanics).
The conservation law becomes

∇ · J +
1
k0

ImV |E|2 = 0 . (1.18)

3We make use of the identity ∇ · [E∗ ∇E − E∇E∗] = E∗ ∇2E − E∇2E∗.
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Integrating over V, and making use of the divergence theorem to transform the first integral
into a surface integral, we find that∫

S
J · n d2r +

1
k0

∫
V

ImV |E|2 d3r = 0 , (1.19)

where n is the outward normal on S. The first term is the energy flux carried by the field
through the surface S. The second term correspond to the power lost by absorption within
volume V. We deduce that the absorbed power is

Pa =
1
k0

∫
V

ImV |E|2 d3r , (1.20)

which, as expected, vanishes for a real potential (remember that for electromagnetic waves, a
material with a real dielectric function is non absorbing).

1.2.2 Energy conservation in a scattering problem

We now derive an energy balance suitable for a scattering problem. Considering here the
scattered field Es, and using Eq. (1.4), we can show that

E∗s ∇
2Es − Es ∇

2E∗s = −2i Im[VE∗sE] . (1.21)

Proceeding as above, but with the energy current of the scattered field

Js =
1

2ik0

[
E∗s∇Es − Es∇E∗s

]
, (1.22)

we obtain

∇ · Js = −
1
k0

Im[VE∗sE] . (1.23)

Integrating over volume V, and noting that

Ps =

∫
S

Js · n d2r (1.24)

is the power carried by the scattered field (simply denoted by scattered power), we find that

Ps = −
1
k0

∫
V

Im[VE∗sE] d3r . (1.25)

Since Es = E− E0, the integrand can be written Im[VE∗sE] = ImV|E|2 − Im[VE∗0E]. Inserting
this splitting into Eq. (1.25), and making use of Eq. (1.20), we obtain

Pe = Ps + Pa (1.26)
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where

Pe =
1
k0

∫
V

Im[VE∗0E] d3r (1.27)

is known as the extinguished power. Equation (1.26) is the energy balance in a scattering
problem. Physically, the extinguished power corresponds to the power transferred from the
incident field to the scattering medium. This power is either scattered to the far field or
absorbed within the medium. Scattering and absorption both contribute to the extinction of
the incident wave.

I0
<latexit sha1_base64="rzyZsswaqfiP1rMK8f5ZaqRjIWA="></latexit>

Figure 1.2: Schematic representation of extinction of an incident beam by a scattering object.

1.2.3 Optical theorem

We will now show that the extinguished power can be deduced from the scattering amplitude
in the forward direction (in the direction of the incident plane wave). This result, known as
the optical theorem, is a very important theorem in scattering theory.

Writing the complex amplitude of the incident plane wave as E0(r) = A0 exp(ik0uinc · r), with
uinc the unit vector defining the direction of incidence, Eq. (1.27) becomes

Pe =
1
k0

Im
[
A∗0

∫
V

exp(−ik0uinc · r) V(r)E(r) d3r
]
. (1.28)

The integral corresponds to the far-field scattering amplitude A(u) defined in Eq. (1.13),
calculated for the forward direction u = uinc. Using the normalized scattering amplitude S(u),
we can rewrite the extinguished power in the form

Pe = I0
4π
k0

ImS(uinc) , (1.29)

where I0 = |A0|
2 is the flux per unit surface carried by the incident wave.4

4This can be seen by computing the energy current J0 of the incident field, and noting that |J0| = I0.
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We have found that the extinguished power is determined by the scattering amplitude in the
forward direction. Physically, extinction can be understood as resulting from the destructive
interference between the incident field and the field scattered in the forward direction. The
scattering amplitude S(uinc) encodes the relative amplitude and phase between both fields,
and therefore encodes information about the extinction process.

1.3 Cross sections

Scattering and absorption cross sections are useful to characterize the fraction of the incident
power that is scattered or absorbed.

1.3.1 Scattering

The power scattered in the direction u per unit solid angle is defined by

dPs

dΩ
= lim

r→∞
Js · u r2 , (1.30)

where Js is the energy current of the scattered field.

E0 Zu

dW

dS u

r
<latexit sha1_base64="GluwxMVyu3cAfCGPp9DyanGq+M8="></latexit>

Figure 1.3: Geometry used in the defintion of the power scattered in a given direction. The
surface dS supported by the solid angle dΩ at a distance r is dS = r2 dΩ. The flux scattered
in the solid angle dΩ coincides with the flux through dS.

Using the far-field expression (1.14) of Es we find that

dPs

dΩ
= |S(u)|2 I0 . (1.31)

The total scattered power is readily obtained by integrating over all directions:5

Ps = I0

∫
4π
|S(u)|2 dΩ . (1.32)

5Integration over the solid angle Ω is equivalent to integration over all directions of the unit vector u.
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The scattering cross section σs is defined by the relation σs I0 = Ps. Using Eq. (1.32), we find
that

σs =

∫
4π
|S(u)|2 dΩ . (1.33)

To characterize the power scattered in a given direction, we also introduce the differential
scattering cross section dσs/dΩ, defined by the relation

dσs

dΩ
I0 =

dPs

dΩ
. (1.34)

We easily see that
dσs

dΩ
= |S(u)|2 . (1.35)

The differential scattering cross section is useful to describe the anisotropy of the scattering
pattern (note that even for a single spherical scatterer, the scattering pattern can be strongly
anisotropic, as will be seen in the next chapter).

1.3.2 Absorption

Similarly, we introduce the absorption cross section σa such that σa I0 is the power absorbed
inside the scattering medium. For a non absorbing material we evidently have σa = 0.

1.3.3 Extinction

The power transferred by the incident field to the scattering medium is either scattered or
absorbed. This power is the extinguished power Pe introduced in the previous section. An
extinction cross section σe, such that σe I0 = Pe, can also be defined. Energy conservation
[Eq. (1.26)] imposes that

σe = σs + σa . (1.36)

Note that σe = σs for a non absorbing material.

As a consequence of Eq. (1.29), we can also write

σe =
4π
k0

ImS(uinc) (1.37)

which is the optical theorem written in terms of the extinction cross section.

Finally, it is important to point out that scattering, absorption and extinction cross sections
can be very different from the actual geometrical cross section σgeom of the scatterer. For a
particle on resonance, we can have σe � σgeom as seen in the example in Fig. 1.4.
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Figure 1.4: Flux lines of an optical plane wave interacting with a silver nanoparticle. The os-
cillation of free electrons in the metal leads to a resonance (plasmon resonance) that enhances
extinction. Left: off resonance. Right: on resonance. The right figure shows a situation in
which the extinction cross section is larger than the geometrical cross section. Adapted from
Ref. [3].
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Chapter 2

Light scattering by small particles

In this chapter we study the scattering of light by a single particle, in the framework of
electromagnetic theory (this is the only chapter in which the full vector formalism is used).
We discuss different interaction regimes of practical interest.

2.1 Scattering of electromagnetic waves

In this section we introduce the basic tools for the description of scattering of electromagnetic
waves, along the same lines as in chapter 1.

2.1.1 Scattered field

A general scattering problem is depicted in Fig. 2.1. An external monochromatic source
(frequency ω) generates the incident field, and is modelled as a current density jext. In the
absence of any other object, the electric field produced by this source is the incident field E0.

In the presence of the particle (scatterer), the total field is

E(r) = E0(r) + Es(r)

where Es denotes the scattered field, that has to be understood as the field radiated by the
induced current (or polarization) in the particle. This statement simply reflects the superposi-
tion theorem.1 Solving the scattering problem amounts to calculating Es(r) in order to deduce,
for example, the scattered or absorbed power.

1In a standard scattering problem it is assumed that the source of the incident field jext is not modified by
the presence of the scatterer.

23
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Es, Hs

E0, H0

Vjext

Figure 2.1: Scattering of an incident electromagnetic wave by a particle with volume V.

Describing the particle by its dielectric function ε(r), or refractive index n(r) =
√
ε(r), the

total field obeys the vector form of Helmholtz equation

∇ × ∇ × E(r) − ε(r)k2
0 E(r) = iµ0ω jext(r) (2.1)

where k0 = ω/c = 2π/λ. The incident field obeys

∇ × ∇ × E0(r) − k2
0 E0(r) = iµ0ω jext(r) . (2.2)

Subtracting Eq. (2.2) to Eq. (2.1), we obtain the equation satisfied by the scattered field:

∇ × ∇ × Es(r) − k2
0 Es(r) = k2

0[ε(r) − 1]E(r) . (2.3)

The term k2
0[ε(r)−1]E(r) on the right-hand side plays the role of a source term for the scattered

field.

2.1.2 Green’s function

The solution to Eq. (2.3) can be shown to obey an integral equation. To proceed, we need to
introduce the free-space electromagnetic Green’s function G0, defined as the solution to

∇ × ∇ ×G0(r, r′) − k2
0 G0(r, r′) = δ(r − r′) I , (2.4)

and satisfying the outgoing wave condition when |r − r′| → ∞ (this condition means that the
Green function behaves as an outgoing spherical wave when |r − r′| → ∞). Here I denotes
the unit second-rank tensor. As for scalar waves, the incident field E0, solution to Eq. (2.2),
can be written as an integral in the form2

E0(r) = iµ0ω

∫
G0(r, r′) jext(r′) d3r′ , (2.5)

2Here we favor an intuitive approach, with the Green’s function seen as a linear impulse response. Equa-
tion (2.5) can be established formally using the vector form of the second Green identity, see for example [1]
(chap. 37) or [2].
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which describes E0 as the superposition of the fields radiated by each point of the source jext.

Consider the particular case of a point electric dipole source located at a point r0. The
associated current density is jext = −iωpδ(r − r0), with p the dipole moment of the source.
We find that in this case the incident field is simply

E(r) = µ0ω
2 G0(r, r0) p . (2.6)

This relation shows that the Green function G0(r, r′) can be understood as the electric field
radiated at point r in free space by an elementary point source (electric dipole) located at
point r′. For electromagnetic waves, the Green function is a second-rank tensor (that can be
represented as a 3 × 3 matrix). The above relation can be rewritten asEx

Ey

Ez

 = µ0ω
2

Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz


px

py

pz

 .
Equation (2.6) shows that the expression of G0 can be deduced from the expression of the
electric field radiated by an electric dipole in free space. The electric field radiated at the point
r by a point electric dipole p located at r′ is [4]:

E(r) =
k2

0

4πε0

exp(ik0R)
R

{
p − (p · u′)u′ −

(
1

ik0R
+

1
k2

0R2

) [
p − 3(p · u′)u′

]}
(2.7)

with R = |r − r′| and u′ = (r − r′)/R. From (2.6) and (2.7) we find that

G0(r, r′) =
exp(ik0R)

4πR

[
I − u′ ⊗ u′ −

(
1

ik0R
+

1
k2

0R2

)
(I − 3u′ ⊗ u′)

]
(2.8)

for r , r′. Here u′ ⊗ u′ is the second-rank tensor with components [u′ ⊗ u′]i j = u′iu
′

j such

that (u′ ⊗ u′)p = (p · u′)u′.

In order to compute scattering amplitudes and cross sections, as for scalar waves, we will need
the far-field asymptotic expression of the scattered field. In the far-field limit, the Green’s
function can be simplified into

G0(r, r′) =
exp(ik0r)

4πr
exp(−ik0u · r′) [I − u ⊗ u] (2.9)

with u = r/r. The validity of this approximation requires r � r′ and r � r′2/λ (far field
conditions). In the far field, the field radiated by the dipole is a spherical wave, corrected by
a phase term that accounts for the shift in position of the dipole with respect to the origin
of coordinates. The tensor term is simply the projection on the direction perpendicular to
u (remember that the electric field has to be transverse in the far field). This is the main
difference with the scalar Green’s function in Eq. (1.11).
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2.1.3 Integral equation

Using the Green function G0, the solution to Eq. (2.3) can be written formally as

Es(r) = k2
0

∫
V

G0(r, r′) [ε(r′) − 1] E(r′) d3r′ . (2.10)

This expression has a simple physical interpretation: denoting by P(r′) = ε0[ε(r′)−1] E(r′) the
induced polarization density inside the particle, the scattered field is simply the field radiated
by P that acts as a secondary source. Finally, the total field is obtained from Eq. (2.10) by
adding the incident field:

E(r) = E0(r) + k2
0

∫
V

G0(r, r′) [ε(r′) − 1] E(r′) d3r′ . (2.11)

This integral equation is the vector form of the Lippmann-Schwinger equation (1.9) previsouly
derived for scalar waves. It provides an exact description of the scattering problem. In a
few particular cases (e.g. homogeneous spherical particles or particles much smaller than the
wavelength) an exact analytical solution can be found. In most cases we have to rely on
numerical simulations or approximate solutions.

2.1.4 Far field and scattering amplitude

The far-field expression of the scattered field is found by inserting (2.9) into (2.10). We find
that Es takes the form

Es(r) = A(u)
exp(ik0r)

r
, (2.12)

where A(u) is the vector scattering amplitude given by

A(u) =
k2

0

4π
[I − u ⊗ u]

∫
exp(−ik0u · r′) [ε(r′) − 1] E(r′) d3r′ . (2.13)

Consider an incident plane wave with complex amplitude E0(r) = E0 e0 exp(ikinc · r), with e0

a unit vector defining the direction of polarization. In this case, it is useful to introduce the
normalized scattering matrix S(u) such that A(u) = S(u)E0 e0. In terms of the scattering
matrix the scattered field in the far zone is

Es(r) = S(u)E0 e0
exp(ik0r)

r
. (2.14)

The scattering matrix S(u) defined this way is independent of the amplitude and polarization of
the incident plane wave. In practice, the scattering matrix for polarized light can be described
in terms of Stokes vectors, a formalism that is not used in this lecture but that is briefly
reviewed in Appendix A.
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2.2 Optical theorem for electromagnetic waves

In this section we derive the optical theorem for electromagnetic waves. The development is
similar to that used in chapter 1 for scalar waves.

2.2.1 Energy balance

With reference to the situation represented in Fig. 2.1, the incident fied satisfies the Maxwell
equation

∇ × H0 = jext − iωε0E0 . (2.15)

In the presence of the scatterer, a polarization density P = ε0(ε− 1) E is created in volume V.
The total field satsifies

∇ × H = jext − iωP − iωε0E . (2.16)

By subtraction we obtain the equation satisfied by the scattered field:

∇ × Hs = −iωP − iωε0Es . (2.17)

We will now write Poynting’s theorem in a form involving the scattered field. Multiplying
Eq. (2.17) by E∗s we obtain

E∗s · ∇ × Hs = −iωP · E∗s − iωε0|Es|
2 . (2.18)

The left-hand side can be modified using the identity ∇ · (A × B) = B · ∇ × A − A · ∇ × B,
leading to

Hs · ∇ × E∗s − ∇ · (E
∗

s ×Hs) = −iωP · E∗s − iωε0|Es|
2 . (2.19)

Using the Maxwell equation ∇ × Es = iωµ0 Hs, we get

− iωµ0|Hs|
2
− ∇ · (E∗s ×Hs) = −iωP · E∗s − iωε0|Es|

2 . (2.20)

At optical frequencies, the usual observables are time-averaged powers (over a time interval
much larger than 2π/ω). In complex notation, the time averaging of quadratic quantities
amounts to taking (1/2)Re[...]. Time averaging Eq. (2.20) leads to

∇ ·

[1
2

Re(E∗s ×Hs)
]

= −
ω
2

Im(P · E∗s) . (2.21)

The left-hand side is the divergence of the time-averaged Poyting vector Πs of the scattered
field. The right-hand side can be rewritten using E = E0 + Es. We obtain the local form of
the energy balance:

ω
2

Im(P · E∗0) =
ω
2

Im(P · E∗) + ∇ · Πs . (2.22)
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In this expression, the left-hand side is the power transferred from the incident field to the
scatterer per unit volume (resulting from the work done by the field on the charges inside the
scatterer). The first term in the right-hand side is the power per unit volume aborbed inside
the scatterer3, and the second term is the divergence of the Poynting vector of the scattered
field, that gives the power per unit surface carried by the scattered field. Integrating Eq. (2.22)
over a volume enclosing the scatterer and bounded by a surface S with outward normal n, and
making use of the divergence theorem, we obtain the global energy balance:

Pe = Pa + Ps (2.23)

with

Pe =
ω
2

∫
V

Im(P · E∗0) d3r (2.24)

Pa =
ω
2

∫
V

Im(P · E∗) d3r (2.25)

Ps =

∫
S
Πs · n d2r . (2.26)

The extinguished power Pe is the power taken from the incident field and transferred to the
scatterer. This power is either scattered (or equivalently radiated in the far field), as described
by Ps, or absorbed in the scatterer, as described by Pa.

2.2.2 Extinguished power

When the incident field is a monochromatic plane wave with complex amplitude E0(r) =
E0 e0 exp(ikinc · r), the unit vector e0 describing the direction of polarization, we have by
definition of the extinction cross section σe (see chapter 1):

Pe = σe
ε0 c
2
|E0|

2 .

The factor I0 = (ε0 c/2) |E0|
2 is the power per unit surface carried by the incident wave.4 We

will show that σe can be written in terms of the complex amplitude of the scattered field in
the forward direction (i.e. in the direction of the incident plane wave). This result is known
as the optical theorem.

From Eq. (2.24) and the expression of the incident plane wave, we obtain

Pe =
ω
2

Im
∫

V
E∗0 e0 · P(r) exp(−ikinc · r) d3r . (2.27)

3The absorbed power per unit volume is j·E (Joule effect), which after time averaging becomes 0.5 Re(j·E∗).
Using j = −iωP, we obtain (ω/2) Im(P · E∗).

4For electromagnetic waves, we use the Poynting vector to define rigorously the flux per unit surface of a
plane wave, and find I0 = (ε0c/2)|E0|

2.
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We will now show that the integral is, up to a factor, the forward scattered field. The scattered
field at point r is

Es(r) = µ0ω
2
∫

V
G0(r, r′) P(r′) d3r′ . (2.28)

In the far field, for an observation along direction u, we have (see Eq. 2.9) :

Es(r) = µ0ω
2 exp(ik0r)

4πr
(I − u ⊗ u)

∫
V

P(r′) exp(−ik0u · r′) d3r′ (2.29)

where the term (I−u⊗u) is simply the projection along the plane transverse to direction u (in
the far field the electric field is transverse). Let us now assume that we measure the far field
using a polarizer, that selects the component of the electric field projected along a direction
e (note that this direction is necessarily perpendicular to u since the field is transverse). The
measured ampitude is

e · Es(r) = µ0ω
2 exp(ik0r)

4πr

∫
V

e · P(r′) exp(−ik0u · r′) d3r′ . (2.30)

We now make use of the scattering matrix S(u) introduced in Eq. (2.14), and rewrite the
preceding equation in the form

e · S(u)E0 e0 =
µ0ω2

4π

∫
V

e · P(r′) exp(−ik0u · r′) d3r′ . (2.31)

From Eqs. (2.27) and (2.31), we easily see that the extinguished power can be written in terms
of the scattering matrix:

Pe =
2π
µ0ω

Im[E∗0 e0 · S(uinc)E0 e0] . (2.32)

Using the extinction cross section, this can also be written as

σe =
4π
k0

Im[e0 · S(uinc)e0] . (2.33)

This result is the optical theorem, that we already discussed in chapter 1. This theorem
shows that by measuring (or calculating) the scattered amplitude in the forward direction, we
can deduce the extinction of the incident wave by scattering and absorption. The fact that
a power is encoded in a field amplitude is not a trivial result, and reflects the interference
process between the incident and scattered wave that enters the energy balance.

2.3 Particles much smaller than the wavelength

In this section we study the particular case of spherical particles with a size much smaller than
the wavelength, and made of a homogeneous material with dielectric function ε(ω). Such
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particles can be treated in the electric dipole approximation5. Their scattering properties can
be decribed using an electric polarizability α(ω).

2.3.1 Dipole approximation and polarizability

Consider a spherical particle with radius R, located in free space with its center at position r0.
According to Eq. (2.11), the total field at position r can be written

E(r) = E0(r) + k2
0

∫
δV

G0(r, r′) (ε − 1) E(r′) d3r′ (2.34)

where δV is the volume of the small particle. In this volume, assuming that R � λ with
λ the wavelength of the incident wave, we can assume that the field inside the particle is
uniform. This field can be determined by writing Eq. (2.34) for r = r0, in the limit R → 0.
We have to take care of the fact that when r → r′ in the integral, the Green function G0 is
singular. Indeed, the term scaling as |r − r′|−3 in the expression of G0 (Eq. 2.8) generates a
non-integrable singularity in the real part of G0 when r = r′. We can write

E(r0) = E0(r0) + k2
0 (ε − 1)

∫
δV→0

Re[G0(r0, r′)] E(r′) d3r′

+ ik2
0 (ε − 1) Im[G0(r0, r0)] E(r0) δV . (2.35)

From Eq. (2.8) it can be shown that6

Im[G0(r0, r0)] =
k0

6π
I

and ∫
δV→0

Re[G0(r0, r′)] E(r′) d3r′ = −
E(r0)
3k2

0

+
R2

3
E(r0) .

In the last equation the first term in the right-hand side results from the singularity of the real
part of G0 (and is independent on the volume of the particle), and the second term results
form the non-singular part. The second term is negligible when R is sufficiently small, and
we will neglect it (keeping this term can increase the precision in the final expression of the
polarizability, but we will not discuss these subtelties in this lecture - see for example [7]).
Inserting these two results into Eq. (2.35), we end up with the expression of the field inside
the particle in terms of the incident field:

E(r0) =
3

ε + 2

[
1 − i 3δV

k3
0

6π
(ε − 1)
ε + 2

]−1

E0(r0) . (2.36)

5When |ε| � 1, which occurs for example with some metals, we may need to go beyond the electric dipole
appoximation, and describe the particle using both an electric and a magnetic dipole, see for example Ref. [5].

6For a detailed calculation of the Green function at r = r′, including the singular real part, see for example [1]
(chap. 37) or [6]. In this lecture these results will be taken for granted.
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We can observe that when ω → 0 (or k0 → 0), we have E(r0) = 3E0(r0)/(ε + 2) which
is a known result in electrostatics (connecting the field inside a homogeneous sphere to the
external applied field). In Eq. (2.36), the additionnal term in brackets is a dynamic correction,
that account for the fact that at optical frequencies we cannot a priori neglect radiation from
the particle, that acts as an energy loss mechanism.

Once the field inside the particle is known, we can calculate the induced dipole moment:

p =

∫
δV

P(r) d3r

=

∫
δV
ε0(ε − 1)E(r) d3r

' ε0(ε − 1) E(r0) δV

= ε0 α0(ω)
[
1 − i

k3
0

6π
α0(ω)

]−1

E0(r0) (2.37)

where we have used Eq (2.36) in the last line. By definition of the polarizability α(ω), we have
p = α(ω) ε0 E0(r0). From (2.37) we immediatly end up with

α(ω) =
α0(ω)

1 − i
k3

0

6π
α0(ω)

with α0(ω) = 4πR3 ε(ω) − 1
ε(ω) + 2

. (2.38)

We can note that for k0 → 0 (electrostatic limit), α(ω) = α0(ω). The polarizability α0(ω) is
known as the quasi-static polarizability. The different between α(ω) et α0(ω) results from the
mechanism of radiation in the dynamic regime (k0 , 0). The dynamic polarizability α(ω) is
often said to include a “radiative correction”. The correction term is proportionnal to (k0R)3,
and tends to zero when k0R � 1. We can keep in mind that for the calculation of orders of
magnitude, we may use the quasi-static polarizability α0(ω) instead of the full polarizability
α(ω). But this approximation violates energy conservation. The denominator in the expression
of α(ω) in Eq. (2.38) is necessary to account for energy conservation in the scattering process.

2.3.2 Cross sections

Scattering

The incident field induces an electric dipole in the particle, with dipole moment p = α(ω) ε0 E0(r0).
The power radiated by this dipole is the scattered power Ps. Recalling the expression of the
power radiated by an electric dipole [4], we can write

Ps =
µ0ω4

12πc
|p|2 .
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By definition of the scattering cross section σs, the scattered power is also Ps = σs I0 =
σs (ε0c/2)|E0|

2, and we can deduce

σs =
k4

0

6π
|α(ω)|2 . (2.39)

It is interesting to note that:

• In a frequency range in which α(ω) can be taken constant, σs ∼ ω4. This frequency
dependence is a feature of scattering from small particles, known as Rayleigh scattering.

• Since when R → 0 we have α(ω) ∼ R3, the scattering cross section of a small particle
scales as σs ∼ R6.

Extinction

The field scattered in a direction u is the field radiated by the induced dipole p in the far field.
Its expression is a classical result in electrodynamics [4]. Assuming that the particle is at the
origin of coordinates (r0 = 0), we have

Es(r) =
k2

0

4π
exp(ik0r)

r
α(ω) E0,⊥ (2.40)

where E0 = E0e0 is the amplitude of the incident plane wave and ⊥ denotes the projection
along a plane perpendicular to u. Since the particle is a sphere, there is no depolarization
for scattering in the forward direction. The scattering matrix for u = uinc is deduced using
Eq. (2.14), which gives

S(uinc) =
k2

0

4π
α(ω) I .

Making use of the optical theorem Eq. (2.33) directly leads to

σe = k0 Im[α(ω)] (2.41)

showing that the exinction cross section is given by the imaginary part of the polarizability.

Here we understand the importantce of the radiative correction in Eq. (2.38). If the parti-
cle is made of a non absorbing material at the considered frequency, the dielectric function
ε(ω) is real, and α0(ω) (the quasi-static polarizability) is also real. But extinction does not
vanish (due to scattering) and the dynamic polarizability must have an imaginary part. For
a non-absorbing material, the radiative correction produces this imaginary part that ensures
energy conservation. Actually, by using α0(ω) instead of α(ω), we would neglect extinction by
scattering.



2.4. PARTICLES OF ARBITRARY SIZE 33

Absorption

The absorption cross section σa is readily obtained by subtraction, since by energy conservation
σe = σs + σa. Using Eqs. (2.39) and (2.41), this leads to

σa = k0

[
Im[α(ω)] −

k3
0

6π
|α(ω)|2

]
. (2.42)

For a non-absorbing particel σa = 0, and the polarizability must satisfy Im[α(ω)] = [k3
0/(6π)]|α(ω)|2.

2.4 Particles of arbitrary size

2.4.1 Particles much larger than the wavelength

For a particle of radius R very large compared to the wavelength, the laws of geometrical
optics apply. For a directional beam (plane wave) encountering the particle, it seems natural
to think that the scattered or absorbed light is that corresponding to the rays intercepted by the
particle, and that the extinction cross section coincides with the geometrical cross section πR2.
In fact, the extintion cross-section is twice the geometrical cross section, as a consequence
of diffraction. After interception by the particle, the wavefront which continues to propagate
is identical to that which would be obtained by obstructing a part of the incident plane
wave by an opaque disc of radius R. This wave, which is no longer a plane wave, will diffract.
Diffracted energy no longer propagates in the forward direction, thus contributing to extinction.
The extinction cross section is therefore larger than πR2. How much is the increase of the
extinction cross section ? The answer is obtained qualitatively by using Babinet’s theorem,
which states that two complementary objects (that is, whose union gives an infinite opaque
plane) produce the same diffraction pattern. The opaque disk of radius R thus produces the
same quantity of diffracted light as a hole of radius R in an infinite opaque plane. In this case,
the fraction of incident light that is diffracted, and therefore raised to the forward direction, is
the fraction which impinges on the hole of radius R. The corresponding cross section is simply
the section of the hole πR2. In total, by combining the two effects, we obtain:

σe = 2πR2 when R� λ . (2.43)

The previous result may seem surprising, even paradoxical: A large particle raises the incident
beam twice the amount of energy it catches ! In fact, it must be borne in mind that this
result is obtained by assuming that the observation is in the far field (at an infinitely large
distance from the particle size), largely beyond the distance where a geometrical shadow is
observable. Under these conditions, any light that deviates from the forward direction, even
slightly, contributes to extinction. An object of a few tens of centimeters placed in front
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of a window only prevents the light it actually intercepts from entering the room. On the
other hand, an object with similar size in the interstellar medium, placed between a star and
a telescope on Earth, will double the amount of light removed before hiting the image plane.

2.4.2 Spherical particles of arbitrary size (Mie scattering)

A rigorous theory of scattering from homogeneous and spherical particles, known as Mie theory,
is available. Given the dielectric function (or refractive index) of the material, and the radius
of the particle, this theory provides analytical expressions of the scattered field in the form of
infinite series that can be calculated numerically. Analytical expressions of the different cross
sections and of the scattering pattern (differential scattering cross section) are also available.
We can find details on the theory in textbooks (for example Ref. [3]), and user-friendly solvers
are easily found online. Mie theory is an extremly convenient tool in practice, to compute the
scattering properties of spherical particles.

An example of numerical calculations is shown in Fig. 2.2, for a particle with radius R et
refractive index m at a given wavelength λ. The figure shows the extinction efficiency versus
the dimensionless parameter 2x(m − 1), where x = 2πR/λ, is the so-called size parameter.
We observe a large number or resonances, whose number increases with the refractive index.
These resonances are a feature of the regime of Mie scattering (one often speaks of Mie
resonances). On the figure also note that the vertical axis correponds to the lower curve, the
other ones being shifted for the sake of visibility. When R becomes large compared to λ, the
extinction efficiency tends to 2 (and not 1). We recover the fact that in the regime R � λ
the extinction cross section becomes σe = 2πR2.

Another feature of Mie scattering is that when R & λ the scattering pattern becomes strongly
peaked in the forward direction, as shown in Fig. 2.3.
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Figure 2.2: Extinction efficiency Qe = σe/(πR2) of a spherical particle with radius R and
refractive index m. The parameter x = 2πR/λ, where λ is the incident wavelength, is the size
parameter. Adapted from [8].

R ⌧ � R ⇠ � R � �

incident light

Figure 2.3: Scattering diagrams for spherical particles with different sizes. Large particles
produce a strong forward scattering. Adpated from Wikipedia.
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Part II

Transport in scattering media
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Chapter 3

Introduction to multiple scattering

In this chapter we introduce the framework used to describe the propagation of scalar waves in
a disordered medium made of discrete scatterers (particles). We define the different scattering
regimes, and introduce the statistical approach that will be used all along the lecture.

3.1 Scattering by an ensemble of particles

3.1.1 Born series and T matrix

We describe a scalar monochromatic wave by its complex amplitude E(r). In chapter 1 we
have shown that the field obeys the Lippmann-Schwinger equation, which reads as

E(r) = E0(r) +

∫
G0(r, r′) V(r′) E(r′) d3r′ , (3.1)

with E0 the complex amplitude of the incident wave.

In the following it will be convenient to use an operator notation, that allows us to rewrite
Eq. (3.1) in the compact form

E = E0 + G0 V E . (3.2)

In this notation, E stands for a ”state vector” |E〉 (as in quantum mechanics), and G0 and
V are operators such that G0 : | f 〉 →

∫
G0(r, r′) f (r′)d3r′ and V : | f 〉 → V(r) f (r). Upon

iterating Eq. (3.2) we obtain

E = E0 + G0 V E0 + G0 V G0 V E0 + G0 V G0 V G0 V E0 + ... (3.3)

which is known as the Born series. Limiting the expansion to E = E0 + G0 V E0 corresponds
to the Born approximation, and defines the regime of single scattering. The other terms in
the expansion correspond to higher orders of multiple scattering.

39
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In order to derive an expression of the scattered field in which scattering between different
particles becomes explicit, it will prove useful to introduce the transition operator, or T matrix,
defined as

T = V + VG0V + VG0VG0V + ... (3.4)

which in real space is also

T(r1, r2) = V(r1) δ(r1 − r2) + V(r1) G0(r1, r2) V(r2)

+

∫
V(r1) G0(r1, r′) V(r′) G0(r′, r2) V(r2) d3r′ + ... (3.5)

A summation of the geometric series gives

T = V(1 − G0V)−1 (3.6)

which is a formal expression of T in terms of V.

The Born series (3.3) can be written

E = E0 + G0 (V + V G0 V + V G0 V G0 V + ...) E0 (3.7)

in which the series in the parenthesis is recognized as the T matrix. This allows us to rewrite
the Lippmann-Schwinger equation (3.2) in the form

E = E0 + G0 T E0 . (3.8)

We note that the field on the right is the incident field E0. The problem has not been solved
since determining the T matrix remains as complicated as solving the integral equation (3.2).
Nevertheless this formalism is well adapted to a treatment of scattering by an ensemble of
particles as we will now see.

3.1.2 Set of discrete scatterers

The potential V and the T matrix describe the scattering medium as a whole. For an ensemble
of discrete scatterers, the potential can be written

V(r) =
∑

j

V j(r) (3.9)

with V j(r) the potential due to the scatterer located at position r j. For light, assuming a set
of identical scatterers with dielectric function ε, we would have

V j(r) = k2
0(ε − 1) Θ(r − r j) (3.10)
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where Θ(r−r j) is the function such that Θ(r−r j) = 1 if r is inside the particle and Θ(r−r j) = 0
otherwise.

Using Eq. (3.9) and the defintion of the T matrix (3.5), we can write

T(r1, r2) =
∑

j

V j(r1) δ(r1 − r2) +
∑

j,k

Vk(r1) G0(r1, r2) V j(r2)

+
∑
j,k,l

∫
Vl(r1) G0(r1, r′) Vk(r′) G0(r′, r2) V j(r2) d3r′ + ... (3.11)

We can now introduce the T matrix of a single scatterer, defined by

t j(r1, r2) = V j(r1) δ(r1 − r2) + V j(r1) G0(r1, r2) V j(r2)

+

∫
V j(r1) G0(r1, r′) V j(r′) G0(r′, r2) V j(r2) d3r′ + ... (3.12)

This operator describes the scattering properties of a single scatterer, and is built in the same
way as the global T matrix. Its use will allow us to separate the scattering process occuring
inside a single scatterer, and the scattering process occuring between different scatterers.
Using Eq. (3.12), we see that the global T matrix can be written in terms of the T matrix of
the individual scatterers:

T =
∑

j

t j +
∑
j,k

t j G0 tk +
∑

j,k,k,l

t j G0 tk G0 tl + ... (3.13)

One can check that by inserting (3.12) into (3.13) all terms in Eq. (3.11) are recovered. We
obtain the final expression of the field by inserting Eq. (3.13) into Eq. (3.8):

E = E0 +
∑

j

G0 t j E0 +
∑
j,k

G0 t j G0 tk E0 +
∑

j,k,k,l

G0 t j G0 tk G0 tl E0 + ... (3.14)

This expression makes it possible to visualize the multiple scattering process as a set of scat-
tering sequences between particles, involving an increasing number of scattering events. The
first sum corresponds to all single scattering sequences. The second sum corresponds to all
double scattering sequences, involving two different scatterers. The third sum corresponds to
all triple scattering events (note that the first and third scatterers may be identical), etc.

Particular case: T matrix of a small scatterer

We have seen in section 2.3 that for light, and for a scatterer much smaller than the wavelength
treated in the electric dipole approximation, the scattering properties are determined by the
polarizability α(ω). Using Eq. (2.40) in the scalar model, we write that the field scattered by
a single scatterer at position r j is

Es(r) = k2
0G0(r, r j)α(ω)E0(r j) . (3.15)
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In terms of the T matrix we can also write

Es(r) =

∫
G0(r, r1)t j(r1, r2)E0(r2)d3r1d3r2 . (3.16)

Since the above expressions must coincide, we find that the T matrix of a single small scatterer
is t j(r1, r2) = k2

0 α(ω) δ(r1 − r j)δ(r2 − r j).

3.2 Field propagator and scattering sequences

Consider the canonical slab geometry shown in Fig. 3.1. The transmitted field E(rb) at a point

Z 
Z = 0 Z = L 

rb ra E0 

Figure 3.1: Schematic representation of scattering sequences in a slab geometry. White
circles stand for scattering events (scatterers). Black point are entry and exit points on the
slab surfaces (that do not necessarily coincide with scattering events).

rb on the output surface z = L is linearly related to the incident field E0(ra) at a point ra on
the input surface z = 0. We can define a propagator h(rb, ra) for the complex amplitude of the
field, such that

E(rb) =

∫
z=0

h(rb, ra) E0(ra) d2ρa (3.17)

where we use the notation ra = (ρa, z = 0), and the integral is along the input surface. We
can also define a propagator for the reflected field by choosing both ra and rb on the surface
z = 0.

We will now see that Eq. (3.14) allows us to write the amplitude propagator in the form of a
summation over scattering sequences:

h(rb, ra) =

∞∑
n=0

∑
Sn={r1,r2...rn}

ASn(rb, ra) exp[iφSn(rb, ra)] (3.18)
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In this expression, we define a scattering sequence Sn with n scattering events by the positions
{r1, r2...rn} of the successive scattering events (remember that ra and rb do not necessarily
coincide with scattering events). The summation includes all scattering sequences with n
scattering events, and runs for n = 0 → ∞ (n = 0 corresponds to free propagation from ra

to rb). We denote by ASn(rb, ra) the (real) amplitude resulting from sequence Sn connecting
ra to rb, and φSn(rb, ra) the phase shift induced by this sequence. We often use the simplified
notation

h(rb, ra) =
∑
Sab

ASab exp(iφSab) (3.19)

where Sab stands for any sequence connecting ra to rb. Two scattering sequences are repre-
sented schematically in Fig. 3.1.

To convince ourselves that expression (3.18) can be deduced from Eq. (3.14), let us write
explicitly the single scattering term in Eq. (3.14) at point rb:

∑
j

∫
G0(rb, r1) t j(r1, r2) E0(r2)d3r1d3r2 =

∫ ∑
j

∫
G0(rb, r1) t j(r1, r2) h0(r2, ra)d3r1d3r2

 E0(ra)d2ρa (3.20)

In the last line, we have used the free-space amplitude propagator h0(r2, ra) that connects the
entry point ra to the first scattering event.1 All multiple scattering terms in Eq. (3.14) can be
written exlicitly the same way. By comparing to Eq. (3.17), we deduce

h = h0 +
∑

j

G0 t j h0 +
∑

j,k

G0 tk G0 t j h0

+
∑

j,k,k,l

G0 tl G0 tk G0 t j h0 + ... (3.21)

In this compact operator notation, the integrals are implicit, but we have to keep in mind
that G0 on the left in each summation connects the last scattering event to the exit point rb,
and that h0 on the right connects the entry point ra to the first scattering event. Therefore,
expression (3.21) is exactly of the form given by Eq. (3.18). Representations in the form of
scattering sequences are very useful, in particular in the study of speckle.

1This propagator is similar to the free-space Green function G0(r, r′), but it connects the field at point r
to the field at point r′, while the Green function connects a field to a source.



44 CHAPTER 3. INTRODUCTION TO MULTIPLE SCATTERING

3.3 Statistical approach

In a disordered medium, a precise description of the detailed microstructure is out of reach.
Most of the time, a microscopic description would even be useless in practice, since the ob-
servables (for example the reflectivity of a sheet of paper, or the transmissivity of a glass of
milk) are averaged quantities (over space or time), that depend on a few statistical parameters
characterizing the disordered medium (for example the average number of scatterers per unit
volume). Instead of describing precisely a particular realization of a disordered medium, and
then performing some statistical analysis, we can use a statistical approach in the first place,
and deduce the statistical properties of the observables without solving the full microscopic
problem on a specific realization. For example, this approach will allow us to find the ex-
pression of the averaged transmissivity of a glass of milk, without solving the equations of
light scattering in a frozen configuration of colloidal particles in suspension in water. This is
actually the spirit of any approach in statistical physics. To proceed, we consider conceptually
an ensemble of realizations of the disordered medium, and perform an ensemble averaging
denoted by 〈...〉. Once this statistical point of view has been adopted, we often speak of wave
scattering in random media (although the randomness results more from the description of
the problem than from the medium itself).

3.3.1 Average field and fluctuations

The total field in one realization of the disordered medium can be written as the sum of an
average value and a fluctuation:

E = 〈E〉 + δE with 〈δE〉 = 0 . (3.22)

The first term is the average field (sometimes denoted by coherent field). The second term is
the fluctuating field that averages to zero by definition. Since the total field is the sum of the
incident and scattered fields, we can also write

E = E0 + 〈Es〉 + δEs (3.23)

with the correspondence 〈E〉 = E0 + 〈Es〉 and δE = δEs.

3.3.2 Average intensity

The average intensity is 〈I〉 = 〈|E|2〉. Using Eq. (3.22), we immediatly see that

〈I〉 = |〈E〉|2 + 〈|δE|2〉 . (3.24)
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The first term is the power carried by the average field. It represents the ballistic component Ib

of the average intensity. The second term is the power carried by field fluctuations. Although
the fluctuating field averages to zero, its average power does not vanish, and represents the
diffuse component Id of the average intensity. In summary we can write

〈I〉 = Ib + Id

with the correspondence Ib = |〈E〉|2 and Id = 〈|δE|2〉.

It is instructive to rewrite the ballistic intensity in the form

Ib = |E0 + 〈Es〉|
2 = |E0|

2 + |〈Es〉|
2 + 2Re(E∗0 〈Es〉)

in which the last term describes the interference between the average scattered field and the
incident field. Intuitively, extinction by scattering and absorption must impose Ib < |E0|

2,
which is made possible by this interference phenomenon (the last term in the above equation
has to be negative). We can conclude that extinction is driven by the interference between the
average scattered field and the incident field. We recover the physical picture of the optical
theorem that we discussed in chapter 1.

Formally, it is possible to derive the equations satisfied by the average field (Dyson equation)
and by the average intensity (Bethe-Salpeter equation). A detailed presentation of this multiple
scattering theory can be found in review articles and textbooks [1, 9, 10, 11, 12]. These
equations remain very difficult to handle, and their use for practical calculations of the average
intensity usually requires approximations that lead to transport equations that can also be
derived phenomenologically. In this lecture we favor the phenomenological approach to describe
the ballistic and diffuse intensity. The treatment of the ballistic intensity is the subject of the
next section, while the treatment of the diffuse intensity is the subject of the next two chapters.

3.4 Ballistic intensity

Let us consider a scattering medium in the slab geometry in Fig. 3.2, illuminated by a plane
wave with complex amplitude E0. From Eq. (3.8), the average field is

〈E〉 = E0 + G0 〈T〉E0 (3.25)

since the incident field is deterministic. If the medium is statistically homogeneous and isotropic
(meaning that all statistical properties, such as the average number of particles per unit volume,
are independent of position and direction), then the average T matrix is homogeneous and
isotropic. From the equation above, we can conclude that the average field sees an effective
homogeneous and isotropic medium. This means that if the incident field is a plane wave
(in practice a collimated beam), then the average field is also a plane wave that is partially
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reflected and transmitted by a slab of an effective homogeneous and isotropic material. Due to
scattering and absorption, the average field is also attenuated and the effective medium is lossy
(note that the averaged field is attenuated by scattering even in the absence of absorption).

Z
Z"="0

I0

Z"="L

Ib

!s
!a
"

Figure 3.2: Attenuation of a collimated beam (plane wave) by a slab with thickness L filled
with a statistically uniform scattering and absorbing material, made of identical particles with
number density ρ, and scattering and absorption cross sections σs and σa.

In order to find the attenuation of the ballistic intensity Ib = |〈E〉|2 transmitted through a slab
with thickness L, we can use a simple approach. Choosing the Oz direction to be normal to
the slab interfaces, we can write an energy balance over a cylindrical volume with cross section
S normal to Oz, and located between the planes z and z + dz:

Ib(z + dz) S − Ib(z) S = −(ρS dz) (σa + σs) Ib(z) = −(ρS dz) σe Ib(z) . (3.26)

This expression describes the extinction of the ballistic intensity between z and z + dz, due to
the ρS dz particules located in the volume.2 We deduce the equation satisfied by Ib(z):

dIb(z)
dz

+ ρσe Ib(z) = 0

which after integration from z = 0 to z = L leads to

Ib(z) = Ib(z = 0) exp(−ρσe L) . (3.27)

We see that the ballistic intensity decays exponentially with the thickness L. The intensity that
is lost is either redistributed in other directions by scattering (and transferred to the diffuse
intensity) or absorbed. Equation (3.27) is actually the general form of the Beer-Lambert law.

2We assume that each particle scatters as if it were alone in the medium. This is known as the independent
scattering approximation, valid in diluted media.
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For purely absorbing media (σe = σa), we recover the connection between the decay of the
intensity and the absorbance ρσaL that is used in chemistry.

The exponential law calls for the introduction of length scales. The length `e = (ρσe)−1 is the
extinction mean free path (or extinction length), and the Beer-Lambert law becomes

Ib(z) = Ib(z = 0) exp(−L/`e) . (3.28)

We also define the scattering mean free path `s = (ρσs)−1 and the absorption mean free path
`a = (ρσa)−1. Note that since σe = σs + σa we have

1
`e

=
1
`s

+
1
`a
. (3.29)

In this lecture we are interested in scattering materials for which the condition `a � `s is
satisfied.

Finally, let us note that choosing to work with length scales is a matter of taste. One may prefer
to work with attenuation coefficients (with unit m−1), and define the extinction coefficient
µe = ρσe, the scattering coefficient µs = ρσs, and the absorption coefficient µa = ρσa (these
coefficients are widely used for example in biomedical optics).

3.5 Transport regimes

We have seen that the behavior of the ballistic intensity is easy to predict (at least in a statis-
tically homogeneous and isotropic medium, and in the independent scattering approximation).
Describing the diffuse intensity is much more involved, and will be the objective of the next
two chapters. We will use an approach similar to that used for the transport of particles. To
introduce this analogy, we show in this section that the Beer-Lambert law is consistent with
a point of view borrowed to the kinetic theory of classical transport.

3.5.1 Scattering mean free path

The scattering mean free path `s = (ρσs)−1 can be understood as the average distance between
successive scattering events. To see this, let us consider a non absorbing medium (`e = `s)
and rewrite Eq. (3.26) in the form

Ib(z + dz) = Ib(z) −
dz
`s

Ib(z) . (3.30)

Seeing the intensity as a flux of particles (we will use the term “photons” for convenience,
although they have to be considered as classical particles), we can understand Ib(z) as the
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number of ballistic photons propagating along direction Oz, or in other words as the number
of photons that have not been scattered before reaching the depth z within the medium. The
above equation shows that (dz/`s) Ib(z) is the number of photons that are scattered between
z and z + dz. Normalizing by the number of incident photons at depth z, we can say that the
probability for a photon to be scattered between z and z + dz is dz/`s.

Let us now take an arbitrary photon in the medium, and propagting along a direction that
we choose as Oz. The probability for this photon to be scattered for the first time after a
distance z is

P(z) dz = exp(−z/`s)
dz
`s

where we introduce P(z) in the left-hand side as the probability density. The average distance
before the first scattering event is

〈z〉 =

∫ +∞

0
z P(z) dz = `s .

We have shown, using a point of view borrowed to the kinetic theory of classical particles,
that `s is the average distance before the next scattering event for a photon taken at random
(this is equivalent to stating that `s is the average distance between two successive scattering
events). The name “mean free path” given to `s is now clear.

3.5.2 Single and multiple scattering

Using the scattering mean free path `s, we can define three regimes for the transport of waves
in a disordered medium with characteristic size L:

• L� `s : Ballistic regime (the wave goes through without being scattered)

• L ' `s : Single scattering regime

• L� `s : Multiple scattering regime.

In the multiple scattering regime, the ballistic intensity is completely extinguished and energy
transport only occurs through the diffuse intensity. At large scales, we will see that the intensity
transport obeys a diffusion law.

3.5.3 Localization

In the regime L � `s and `s ' λ, with λ the wavelength, a substantial deviation from
the diffusion law is expected due to the phenomenon of Anderson localization. The interested
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reader could refer to [13] for an introduction to the topic and [9] for a more advanced treatment.
The localization regime will not be discussed in this lecture, and we will assume that the
condition `s � λ is satisfied.

3.5.4 Homogenization

It is also interesting to briefly address the regime of homogenization, that is expected when
all structural scales in the medium are much smaller than the wavelength. Indeed, in this case
the wave does not “resolves” the microstructure of the medium and there is no scattering.
The wave sees an effective homogeneous medium. Glass is an exemple of a material that is
disordered, but homogeneous for visible light. Homogenization is a difficult subject that we
do not pretend to cover here. Instead we will only discuss an example based on scaling laws.

Let us assume that starting from a cloud of randomly distributed particles in a given volume,
we cut the particles in smaller and smaller pieces, while keeping the volume fraction f constant
(meaning that we do not remove or add material in the volume). When the size R of the
particles becomes much smaller than λ, they behave as electric dipoles and we have seen that
their scattering cross section scales as (see Eq. 2.39):

σs =
ω4

6πc4 |α(ω)|2 ∼ R6 .

Since the volume fraction f = (4πR3/3)ρ is constant, the number density ρ scales as R−3.
As a result, the scattering mean free path scales as

`s =
1
ρσs
∼ R−3 .

We see that when the size of the particles R→ 0, the scattering mean free path `s →∞. The
medium becomes less and less scattering, although the amount of material does not change.
When `s � L with L the size of the medium, there is no more scattering and only a ballistic
intensity is observed. This very simple example illustrates the idea of the homogenization limit.

3.6 Diffuse intensity: Towards a transport equation

With reference to the slab geometry in Fig. 3.1, and using Eq. (3.17), the average intensity in
the output plane can be written

〈I(rb)〉 =

∫
z=0
〈h(rb, ra)h∗(rb, r′a)〉E0(ra)E∗0(r′a) d2ρad2ρ′a . (3.31)
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The ballistic intensity can be written

Ib(rb) =

∫
z=0
〈h(rb, ra)〉 〈h∗(rb, r′a)〉E0(ra)E∗0(r′a) d2ρad2ρ′a (3.32)

showing that the diffuse intensity Id = 〈I〉 − Ib is driven by the correlator 〈h(rb, ra)h∗(rb, r′a)〉 −
〈h(rb, ra)〉 〈h∗(rb, r′a)〉. Note that at large scales (L� `s), the ballistic intensity is exponentially
small and we can assume 〈I〉 ' Id.

The key point in evaluating 〈I(rb)〉 is to compute the correlator 〈h(rb, ra)h∗(rb, r′a)〉. Inserting
the expansion (3.21) of h(rb, ra) in scattering sequences, and trying to perform the averaging
over the positions of the scatterers, we immediately understand that 〈h(rb, ra)h∗(rb, r′a)〉 is a
very complex object. Actually, there is no hope to average by hand, and multiple scattering
theory is a framework developed to handle such an averaging process [1, 9, 11, 12]. Reviewing
multiple scattering theory is beyond the scope of this lecture. Instead, we will briefly outline
the main idea that leads to a transport theory for the diffuse intensity.

For the computation of quadratic quantities, the most general object is the field correlation
function 〈E(rb)E∗(r′b)〉 (when rb = r′B this correlation function coincides with the average
intensity 〈I(rb)〉). Computing 〈E(rb)E∗(r′b)〉 amounts to averaging the product of pairs of
scattering sequences as that represented in Fig. 3.1. When the scattering mean free path `s

is large compared to the wavelength λ, we can expect the product of two different scattering
sequences to vanish on average. Indeed, even two scattering sequences differing by only one
scattering event have a difference in optical path on the order of `s � λ. The interference
term between the fields scattered along the two sequences will average to zero due to their
large phase difference. As a result, only the contributions resulting from two fields E and E∗

following the same scattering sequences will contribute to 〈E(rb)E∗(r′b)〉. Keeping only these
contributions is known as the ladder approximation. In the formal multiple scattering theory,
this approximation emerges from a first-order perturbative expression of 〈E(rb)E∗(r′b)〉 in terms
of the small parameter 1/(k0`s), with k0 = 2π/λ [1, 9, 11, 12].3

In the regime k0`s � 1, and at large scale L� `s, the ladder approximation allows us to write

〈h(rb, ra)h∗(r′b, r
′

a)〉 ' P(rb, ra) δ(rb − r′b) δ(ra − r′a) (3.33)

where P(rb, ra) is an intensity propagator that sums the contributions of all ladder scattering
sequences connecting ra to rb, as represented in Fig. 3.3. Again, Eq. (3.33) can be justified
rigorously in the framework of multiple scattering theory. Also keep in mind that the delta
functions make sense only for the computation of field correlations, or intensities, at scales
larger than the scattering mean free path `s (macroscopic description).

3To get an order of magnitude, we can think of the propagation of near infrared light in biological tissues.
The wavelength is λ ' 1 µm, and the scattering mean free path is `s ' 100 µm. Therefore k0`s ' 600 and
1/(k0`s)� 1.
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ra E0 

Figure 3.3: Graphical representation of the ladder approximation in a slab geometry. The dif-
fuse intensity is transported through scattering paths involving the same sequence of scatterers
for E (solid line) and E∗ (dashed line).

In summary, we have ended up with the following picture: in the regime k0`s � 1, the diffuse
intensity can be understood as the sum of intensity contributions along different scattering
paths. We are left with a picture in which the wave aspect can be forgotten (interferences can
be neglected). The problem becomes similar to a problem of transport of classical particles.
In the next two chapters, we address the transport of intensity, based on the radiative transfer
equation, and on the diffusion approximation.
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Chapter 4

Radiative Transfer Equation

In this chapter we derive a transport equation for the averaged intensity in a scattering medium,
known as the radiative transfer equation (RTE). We use a phenomenological approach, based
on an energy balance, that reproduces the historical derivation presented in the context of
astrophysics [14]. A similar transport equation has been developed later to describe the
transport of neutrons in nuclear reactors [15]. A derivation of the RTE starting from the wave
equation is available, and relies on the ladder approximation briefly discussed at the end of
chapter 3 (see for example [1] (chap. 16 and 17), [10] or [11]).

4.1 Specific intensity

Consider an elementary surface dS with normal n and located at point r, as in Fig. 4.1. The
power flowing through the surface can be written

P(r, ω, t) = dS
∫

4π
I(r,u, ω, t) u · n dΩ (4.1)

where dΩ means an integration over the solid angle, or equivalently over the direction defined
by the unit vector u (we have dΩ = sinθ dθ dφ in spherical coordinates). In this expression,
I(r,u, ω, t) is the specific intensity that represents the power per unit surface flowing in direction
u at point r and time t (the unit of the specific intensity is W.m−2.sr−1).1 Here we assume
quasi-monochromatic waves, with a central frequency ω and a slowly varying envelope in
time. For the sake of simplicity in the following, we will omit the variable ω in
the notations, and write for example I(r,u, t) for the specific intensity at a given
frequency ω.

1The specific intensity plays for the radiation the same role as the Boltzmann distribution function for the
transport of particles.

53
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Figure 4.1: Geometry used for the definition of the specific intensity.

From the specific intensity we can define the energy current by

q(r, t) =

∫
4π

I(r,u, t) u dΩ . (4.2)

It coincides (up to an arbitrary prefactor) with the energy current J defined in chapter 1
(Eq. 1.17). The flux of q through a surface is the gobal energy flux (integrated over all
directions), flowing through this surface (unit W).

We also define the energy density (unit J.m−3), as

U(r, t) =

∫
4π

I(r,u, t)
vE

dΩ (4.3)

where vE is the energy velocity (also known as the transport velocity).

It is interesting to examine two particular cases. For a collimated radiation propagating along
a direction u0, the specific intensity can be written I(r,u, t) = I0(r, t) δ(u − u0), where the
Dirac delta function δ(u − u0) has to be understood in the sense of the angular integration
over the solid angle dΩ.2 It is easy to see that in this case q(r, t) = vEu0 U(r, t), which gives
a clear meaning to the energy velocity.3 For an isotropic radiation, the specific intensity is
independent on u, and we have I(r, t) = (vE/4π) U(r, t) and q(r, t) = 0.

4.2 Loss and gain processes

We will now describe the evolution of the specific intensity in a scattering and absorbing
medium. The latter is considered at the macroscopic scale, with scattering and absorption

2We have δ(u − u0) = δ(θ − θ0) δ(φ − φ0)/| sinθ0|.
3Note the analogy with the relation j = ρv between the current density, the charge density and the charge

velocity in electrodynamics.
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processes modelled using continuous parameters (such as the absorption and scattering co-
efficients). These parameters have to be understood as averaged over a small volume (a
point at the macroscopic scale) large enough to contain many particles. We will assume that
macroscopically the medium is homogeneous and isotropic.

4.2.1 Absorption

Consider the energy flux propagating along a direction u. After propagating over a distance
ds in the medium, the decrease of the specific intensity due to absorption can be written

dIa(r,u, t) = −µa I(r,u, t) ds (4.4)

where µa is the absorption coefficient (unit m−1). Its inverse `a = 1/µa is the absorption
mean free path (or absorption length). In diluted media made of identical particles, and in the
independent scattering regime (no correlations in the positions of different particles), we have
µa = ρσa, where ρ is the number density of particles and σa their absorption cross section.

4.2.2 Extinction by scattering

The process of scattering also removes some energy from the directional flux, and the decrease
of the specific intensity due to scattering can be written in a similar fashion:

dIs(r,u, t) = −µs I(r,u, t) ds (4.5)

with µs the scattering coefficient. Its inverse `s = 1/µs is the scattering mean free path (or
scattering length). In the independent scattering regime we also have µs = ρσs with σs the
scattering cross section of a single particle.

It is convenient to introduce the extinction coefficient µe = µa + µs as well as its inverse
`e = 1/µe known as the extinction mean free path (or extinction length). To characterize the
relative weight of scattering and absorption in the extinction process, we can use the albedo

a =
µs

µs + µa
(4.6)

such that a = 1 for a purely scattering medium (e.g. a cloud for light waves) and a = 0 for a
purely absorbing medium (e.g. concentrated black ink).

4.2.3 Gain by scattering

The scattering process distributes the incident energy over all directions. To describe this
phenomenon, we introduce the phase function p(u,u′) such that (µs/4π) p(u,u′)ds is the
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fraction of the incident power propagating along direction u′ that is scattered in direction
u, after a propagation over a distance ds. With this definition, p(u,u′) is a dimensionless
quantity, that can be understood as the probability of scattering from direction u′ to u. Note
that with this definition the phase function is normalized as

∫
4π

p(u,u′) dΩ = 4π.

For a diluted medium made of identical particles, and in the independent scattering regime,
the phase function is simply

p(u,u′) =
4π
σs

dσs

dΩ
(4.7)

where dσs/dΩ is the differential scattering cross section introduced in chapter 1.

Using the phase function, the specific intensity is increased by scattering, after propagating
along a distance ds, by an amount

dIg(r,u, t) =
µs

4π

∫
4π

p(u,u′) I(r,u′, t) dΩ′ ds . (4.8)

Remarks :

• In many practical situations, the medium is homogeneous and isotropic at the macro-
scopic scale. In this case the phase function only depends on the relative angle Θ
between the incident direction u′ and the scattering direction u (Θ is referred to as
the scattering angle). We have p(u,u′) = p(u · u′) = p(cos Θ). This condition is
assumed to be satisfied in the following.

• If the phase function is a constant (independent on Θ), we speak of isotropic scattering.
The other situations correspond to anisotropic scattering. Some examples of phase
functions are given in Appendix B.

The degree of anisotropy of the scattering process can be measured using the anisotropy factor
g defined as

g =
1

4π

∫
4π

u · u′ p(u · u′) dΩ =
1

4π

∫
4π

cos Θ p(cos Θ) dΩ . (4.9)

In other words, g is the averaged cosine of the scattering angle. g = 0 corresponds to isotropic
scattering, and g ' 1 correspond to strong forward scattering. In a medium made of identical
particles, and in the independent scattering regime, the value of g is directly connected to the
size of the particles compared to the wavelength (g ' 0 for small particles and g ' 1 for large
particle).4

4In the presence of correlations in the positions of the particles, interferences between the fields scattered
by different particles can lead to a phase function and a value of g that differ from that given by individual
particles. This is a regime of dependent scattering.
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4.3 Energy balance and RTE

The energy flux propagating along direction u evolves, upon propagation along a distance ds,
according to

I(r + dr,u, t + dt) − I(r,u, t) = dIa(r,u, t) + dIs(r,u, t) + dIg(r,u, t)

where dr = ds u, and dt = ds/vE since the energy propagates with a velocity vE. This balance
accounts for extinction by absorption and scattering, and for gain by scattering. Using the
explicit expression of the terms in the right-hand side we obtain

I(r + dr,u, t + dt) − I(r,u, t) = −µe I(r,u, t)ds +
µs

4π

∫
4π

p(u · u′) I(r,u′, t) dΩ′ ds

The left-hand side can be rewritten as

∂
∂t

I(r,u, t) dt + u · ∇I(r,u, t) ds , (4.10)

where the gradient operator in the second term has to be taken over the position r. We obtain

1
vE

∂
∂t

I(r,u, t) + u · ∇I(r,u, t) = −µe I(r,u, t) +
µs

4π

∫
4π

p(u · u′) I(r,u′, ω, t) dΩ′ (4.11)

which is our final result. This equation, known as the RTE, describes the transport of the
specific intensity in a scattering and absorbing medium. It includes both partial derivatives and
an integral term (it bears similarity with the Boltzmann equation used in the kinetic theory
of gases). Many techniques to solve the RTE in simple geometries have been developed [1,
14, 16, 17], and analytical solutions exist only in a few particular cases (for example slab
geometry with isotropic scattering). In many practical situations, we have to rely on numerical
simulations. In this lecture, we will not discuss solutions to the RTE, but instead use the RTE
as a step towards the diffusion approximation, which is the subject of the next chapter.

4.4 Ballistic and diffuse intensities

In the situation where the scattering medium is illuminated with a collimated beam (assumed
to be a plane wave) propagating along direction u0, we can split the specific intensity into a
ballistic (or collimated) component and a diffuse component:

I(r,u, t) = Ib(r, t) δ(u − u0) + Id(r,u, t) (4.12)

where δ(u− u0) is again the Dirac delta function with respect to the angular integration over
the solid angle. Inserting this decomposition into the RTE (4.11), we obtain two equations
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(one for the terms involving δ(u − u0), and one for the non-singular terms). For the ballistic
component, we get

1
vE

∂
∂t

Ib(r, t) + u0 · ∇ Ib(r, t) = −µe Ib(r, t) . (4.13)

In the steady-state regime, solving this equation leads to the Beer-Lambert law. Indeed,
choosing the Oz axis along the direction u0, we find Ib(z) = Ib(0) exp(−z/`e), and we recover
the exponential decay of the ballistic beam with a characteristic length `e = 1/µe. For the
diffuse component, we obtain an RTE with a source term:

1
vE

∂
∂t

Id(r,u, t) + u · ∇ Id(r,u, t) = −µe Id(r,u, t) +
µs

4π

∫
4π

p(u · u′) Id(r,u′, t) dΩ′

+
µs

4π
p(u · u0) Ib(r, t) . (4.14)

The source term describes the transfer of energy from the ballistic beam to the diffuse intensity.
The relative weight of the ballistic and diffuse components actually drives the transport regime.
In particular, we will see in the next chapter that when the transport occurs through the diffuse
component only, the RTE asymptotically simplifies into a diffusion equation at large length
and time scales.



Chapter 5

Diffusion approximation

In this chapter, we show that at large length and time scales, the radiative transfer equation
(RTE) simplifies into a diffusion equation that drives the transport of the energy density. The
diffusion equation is much simpler to solve, and is a very convenient tool to analyze real
situations. Since diffusion processes are found in many transport phenomena, the diffusion
equation allows one to draw interesting analogies, and to put forward universal behaviors in
wave transport.

We have seen in the previous chapter that the specific intensity I(r,u, t) obeys the RTE:

1
vE

∂
∂t

I(r,u, t) + u · ∇ I(r,u, t) = −µe I(r,u, t) +
µs

4π

∫
4π

p(u · u′) I(r,u′, t) dΩ′ . (5.1)

Starting from Eq. (5.1), we will show that the energy density U(r, t) satisfies a diffusion
equation at large scales. We consider here the RTE without a source term. In the case of
a scattering medium illuminated by a collimated beam, it can be usefuel to split the specific
intensity into its ballistic and diffuse components (as in section 4.4). The derivation of the
diffusion equation starting from the RTE with a source term accounting for the conversion of
ballistic intensity into diffuse intensity (as in Eq. 4.14) is given in Appendix C.

5.1 Local energy conservation

The RTE can be transformed into a local conservation equation, similar to that found for the
transport of particles. To proceed, we integrate Eq. (5.1) over direction u (integration over
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the solid angle):

1
vE

∂
∂t

∫
4π

I(r,u, t) dΩ +

∫
4π

u · ∇ I(r,u, t) dΩ = −µe

∫
4π

I(r,u, t) dΩ

+ µs

∫
4π

I(r,u′, t) dΩ′ (5.2)

where we have used the normalization of the phase function
∫

4π
p(u · u′) dΩ = 4π in the last

term. The definition of the energy density U(r, t) (Eq. 4.3) directly leads to
∫

4π
I(r,u, t) dΩ =

vE U(r, t). From the definition of the energy current q(r, t) (Eq. 4.2), we have:∫
4π

u · ∇r I(r,u, t) dΩ = ∇r ·

∫
4π

I(r,u, t) u dΩ = ∇ · q(r, t) .

Equation (5.2) simplifies into

∂
∂t

U(r, t) + ∇ · q(r, t) + µa vE U(r, t) = 0 (5.3)

which is a local energy balance.

In a non absorbing medium (µa = 0), the equation simpifies into

∂
∂t

U(r, t) + ∇ · q(r, t) = 0 (5.4)

which takes the form of a continuity equation describing the conservation of the wave energy.

5.2 First moment of the RTE

We now derive a second equation involving the energy density and the energy current. To
proceed, we multiply the RTE (5.1) by u, and we integrate over the directions u (this amounts
to taking the first moment of the RTE in terms of the angular variables). We obtain:

1
vE

∂
∂t

q(r, t) +

∫
4π

u [u · ∇ I(r,u, t)] dΩ = −µe q(r, t) (5.5)

+
µs

4π

∫
4π

[∫
4π

u p(u · u′) dΩ

]
I(r,u′, t) dΩ′ .
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The integral in the right-hand side can be simplified. Using the anistropy parameter g defined
in Eq. (4.9), we can show that:1∫

4π
u p(u · u′) dΩ = 4π g u′ . (5.6)

Using (5.6), Eq. (5.5) becomes:

1
vE

∂
∂t

q(r, t) + [µa + µs(1 − g)] q(r, t) = −

∫
4π

u [u · ∇ I(r,u, t)] dΩ . (5.7)

This equation has been deduced from the RTE without any approximation. The integral term
in the right-hand side remains complicated to handle, and its simplification will lead to the
diffusion approximation.

5.3 Transport mean free path

In the left-hand side in Eq. (5.7) a factor µs(1 − g) has appeared. This term actually defines
a new length scale

`t =
1

µs(1 − g)
=

`s

1 − g
(5.8)

known as the transport mean free path. We will see that it plays an important role in the
regime of diffusive transport.

In a medium with isotropic scattering (g = 0), we have `t = `s. Conversely, in a medium with
anisotropic scattering, the two length scales can be very different. For example, in biological
tissues and for near infrared light, the inhomogeneities (scatterers) have sizes on the order of
the wavelength, or even larger, and g ' 0, 9, `s ' 100µm and `t ' 1 mm. The transport mean
free path has to be understood as the average distance after which the angular distribution of
the intensity has become quasi-isotropic.

5.4 Deep multiple scattering

In a medium with size L � `s, and with weak absorption (`a � `s), the wave can enter the
regime of multiple scattering. After a propagation distance larger than the transport mean free

1Take the direction of the unit vector u′ as the (Oz) axis. The coordinates of u in spherical coordinates are
(sinθ cosφ, sinθ sinφ, cosθ). Due to the integration over φ, the only non-zero contribution of the integral∫

4π u p(u · u′) dΩ is along the (Oz) axis, and therefore along u′. By definition of g (Eq. 4.9), this contribition

is 4πg. We deduce that
∫

4π u p(u · u′) dΩ = 4πgu′.
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path `t, the angular distribution of the wave intensity becomes quasi-isotropic. The specific
intensity being a smooth function of the direction, we can perform a first order expansion in
terms of the angular variable u. Technically, this amounts to expanding the specific intensity
on a basis of Legendre polynomials (see Appendix A), and keeping only the first two terms,
which is known as the P1 approximation. Under this approximation, the specific intensity can
be written [16]

I(r,u, t) = I0(r, t) +
3

4π
q(r, t) · u (5.9)

where I0 is an isotropic contribution and the second term is the first correction to isotropy.

We note that the integral of the anisotropic term over directions vanishes:∫
4π

q(r, t) · u dΩ = q(r, t) ·
∫

4π
u dΩ = 0 .

Integrating Eq. (5.9) over u leads to I0(r, t) = vE U(r, t)/(4π), showing that the isotropic term
in the specific intensity is proportionnal to the energy density.

5.4.1 Energy current

We can now simplify the term in the right-hand side in Eq. (5.7). Let us rewrite this term
using tensor notations.2 Its component along direction j reads:∫

4π
u j ui

∂
∂xi

I(r,u, t) dΩ .

Under the P1 approximation, this expression can be simplified as follows:∫
4π

u j ui
∂
∂xi

I(r,u, t) dΩ =
∂
∂xi

∫
4π

u j ui I(r,u, t) dΩ

=
∂
∂xi

I0(r, t)
∫

4π
u j ui dΩ +

3
4π

∂
∂xi

qk(r, t)
∫

4π
u j ui uk dΩ .

It can be shown3 that
∫

4π
u j ui dΩ = (4π/3) δi j, and

∫
4π

u j ui uk dΩ = 0. The component along
direction j of Eq. (5.7) simplifies into:

1
vE

∂
∂t

q j(r, t) + µs(1 − g) q j(r, t) = −
4π
3

∂
∂x j

I0(r, t) (5.10)

2In these notations we denote by x j, with j = 1, 2, 3, the space coordinates (instead of x, y, z), and by
u j the component of u along direction j. A summation is implicit each time a repeated index appears. For
example, aibi has to be understood as

∑
i aibi.

3One can use spherical coordinates. This is left as an exercise.
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where we have assumed µa � µs(1 − g), or equivalently `a � `t, to neglect the absorption
term. Using the connection between U and I0, and coming back to vector notations, we end
up with:

1
vE

∂
∂t

q(r, t) + µs(1 − g) q(r, t) = −
vE

3
∇U(r, t) . (5.11)

At sufficiently large time scales, the first term becomes negligible. Denoting by τ the char-
acteristic time scale of the energy flux, and q the order of magnitude of the energy current,
we have 1/vE |(∂/∂t)q| ∼ q/(vE τ) and µs(1 − g) |q| ∼ µs(1 − g) q = q/`t. The first term
in Eq. (5.11) is negligible provided that `t � vE τ. To get an order of magnitude, consider
biomedical optics using near infrared light. We have `t ' 1 mm, and the condition holds as
long as τ > 0.1 ns. We finally end up with a relationship between the energy current and the
gradient of the energy density:

q(r, t) = −
1
3

vE `t ∇U(r, t) = −D∇U(r, t) . (5.12)

This relation takes the form of a diffusion law (similar to Fourier’s law, Fick’s law or Ohm’s law),
with a diffusion constant D = (1/3) vE `t. Note that this expression of the diffusion constant
is typical of random walks with velocity vE and mean free path `t in three dimensions.

5.4.2 Diffusion equation

Inserting Eq. (5.12) into Eq. (5.3), we obtain the diffusion equation satisfied by the energy
density:

∂
∂t

U(r, t) −D∇2U(r, t) + µa vE U(r, t) = 0 . (5.13)

The last term acounts for absorption losses, and vanishes in a non absorbing medium (in this
case the equation takes the form of the heat equation).

In summary, we have shown that in the multiple scattering regime, and at large length and time
scales compared to `t and `t/vE, the energy density of the wave obeys a diffusion equation.
Since this equation is far easier to handle than the RTE, it is used in many applications in
imaging and sensing in (or through) scattering media. Qualitatively, this result also shows
that in the diffusive regime the wave transport can be undesrtood as a transport of particles
following a random walk with velocity vE and mean free path `t.

5.5 An example of diffusive behavior

Consider a slab with thickness L, filled with a non absorbing scattering material, and illumi-
nated by a monochromatic plane wave at normal incidence. Assuming L � `t, the diffusion
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approximation can be used to evaluate the transmitted diffuse intensity.

Taking the (Oz) direction normal to the slab interfaces, with z = 0 and z = L the input and
output interfaces, respectively, the energy density U(z) satisfies

d2U
dz2 = 0 .

After integration we obain
dU
dz

= constant =
−q
D

with q the z-component of the energy current (that gives the flux per unit surface flowing
through the medium). A second integration leads to

U(z = L) −U(z = 0) =
−qL
D

which allows us to express the flux Φ = qS (unit W) flowing through a cross section S of the
slab:

Φ =
D S
L

[U(z = 0) −U(z = L)] .

By analogy with Ohm’s law, we can define the conductance G that reads as

G =
D S
L

.

We see that the conductance scales as 1/L, which is a feature of diffusive transport (remem-
ber that Ohm’s law leads to a resistance 1/G scaling as L). We can also define a diffuse
transmission coefficient T, proportionnal to G. Its calculation requires the determination of
U(z = 0) and U(z = L), taking into account the boundary conditions at the slab interfaces,
and is performed in Appendix D. We obtain

T ∼
`t

L
.

The decay of the diffuse transmission in 1/L in the diffusive regime explains the high reflectivity
R = 1 − T of strongly scattering materials. Indeed, a non absorbing and scattering medium
illuminated with white light reflects all wavelengths when L� `t, with a quasi-isotropic angular
distribution. The medium appears bright and white, as a glass of milk, a sheet of paper, a
thick cloud seen from a plane, or snow under sunlight.
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Speckle
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Chapter 6

Intensity statistics

Scattering of a coherent wave by one realization of a disordered material (e.g., a solid powder,
a sheet of paper, or the rough surface of a material) leads to a complex spatial distribution of
intensity known as a speckle pattern. An example is shown in Fig. 6.1. The detailed analysis
of a particular speckle pattern is most of the time out of reach and even useless. Nevertheless,
speckle patterns can be characterized statistically. An interesting feature of speckle patterns
is that a wide class of them, known as fully developed speckles, exhibit universal statistics. In
this chapter, we study the statistical distribution of the intensity measured at one point in a
speckle pattern.

Laser 

Figure 6.1: Optical speckle pattern generated by illuminating a slab of scattering medium
(corresponding to one realization of disorder) with a coherent laser beam.
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6.1 Fully developed speckle

Let us denote by I(r) the intensity of the wave measured at point r in a speckle pattern. In
the statistical approach, we describe the scattering medium using an ensemble of realizations
of disorder, and I(r) is a random variable. Assuming ergodicity, the statistical properties of
I(r) can be compared to that obtained in practice from the spatial fluctuations of the intensity
on a given image of a speckle pattern, as that shown in Fig. 6.1.

The field at a point r in the speckle pattern is of the form

E(r, t) = Re[E(r) exp(−iωt)] (6.1)

where ω = 2πc/λ is the frequency of the incident light, λ being the wavelength in vacuum.
This field is the superposition of scattered waves emerging from all possible scattering se-
quences inside the medium. A scattering sequence is defined by a number of scattering events
and the position of each scattering events. In this picture, the complex amplitude of the field
can be written

E(r) =
∑
S

AS(r) exp[iφS(r)] (6.2)

where S denotes any scattering sequence that starts on the entry surface of the medium and
ends up at the observation point r. This expansion of the field in terms of scattering sequences
has been justified in chapter 3. Each term in the sum involves a real amplitude AS(r) and
a phase φS(r) that are both random variables. Sums as in Eq. (6.2) are usually denoted by
random phasor sums [18, 19].

The statistical properties of the intensity produced by a field of the form (6.2) can be obtained
using the model of fully developed speckle, that relies on the following assumptions:

1. For two different sequences S and S′, the complex amplitudes ES(r) = AS(r) exp[iφS(r)]
and ES′(r) = AS′(r) exp[iφS′(r)] are independent random variables;

2. For a given sequence S, the amplitude AS(r) and the phase φS(r) are mutually uncor-
related;

3. The phase φS(r) is uniformly distributed on [−π,+π].

We will see that under these assumptions, the scattered field obeys (complex) Gaussian statis-
tics.

6.2 Amplitude distribution function

The sum (6.2) contains a large number of terms, that are independent random variables. In
these conditions, it is possible to deduce the statistics of the field amplitude using the central
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limit theorem. Let X = Re E(r) and Y = Im E(r) be the real and imaginary parts of the field,
that can be written as

X =
∑
S

AS(r) cosφS(r)

Y =
∑
S

AS(r) sinφS(r) .

The average value, variance and cross-correlation of these two random variables can be easily
determined using the three hypotheses of the previous section. Since the amplitudes and
phases are uncorrelated, and the phases are uniformy distributed on [−π,+π], one immediately
obtains 〈X〉 = 0 and 〈Y〉 = 0. It is also possible to compute the second moment:

〈X2
〉 =

∑
S

∑
S′

〈AS(r)AS′(r)〉 〈cosφS(r) cosφS′(r)〉

=
∑
S

〈A2
S

(r)〉 〈cos2 φS(r)〉

=
1
2

∑
S

〈A2
S

(r)〉 (6.3)

where we have used hypotheses 1 in the second line. The same results holds for 〈Y2
〉, and we

will use the notation σ2 = 〈X2
〉 = 〈Y2

〉 for the variance of X and Y. Moreover, it is also easy to
verify that 〈XY〉 = 0, showing that the real and imaginary parts of the field are uncorrelated.

From the central limit theorem we can infer that, in the limit of an infinite number of terms in
the summation (6.2), both X and Y are Gaussian variables with zero mean and equal variance.
Since X and Y are uncorrelated (and therefore independent), the joint probability of X and Y
is also Gaussian:

p(X,Y) =
1

2πσ2 exp
(
−

X2 + Y2

2σ2

)
. (6.4)

The statistics of the field amplitude A =
√

X2 + Y2 is obtained from a simple change of
variable:

p(A) =
A
σ2 exp

(
−

A2

2σ2

)
for A > 0

p(A) = 0 for A < 0 . (6.5)
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6.3 Intensity distribution function

The probability density of the intensity I(r) = |E(r)|2 directly follows from Eq. (6.5), using the
relationship

p(I) = p(A =
√

I)
dA
dI

=
1

2
√

I
p(A =

√

I) . (6.6)

We finally obtain:

p(I) =
1
〈I〉

exp
(
−

I
〈I〉

)
for I > 0 (6.7)

p(I) = 0 for I < 0 .

In this expression 〈I〉 = 2σ2 is the averaged intensity of the speckle pattern (remember that
〈E〉 = 0 in this model so that 〈I〉 = 〈|E|2〉 = 〈X2 + Y2

〉 = 2σ2). This form of the statistical
distribution of the intensity is known as the Rayleigh statistics, and is a feature of speckle
patterns in the Gaussian approximation. It is interesting to note that the most likely value of
the intensity is I = 0.

6.4 Speckle contrast

In order to characterize the intensity fluctuations in a speckle pattern, we can calculate the
variance Var(I) = 〈I2

〉 − 〈I〉2. The speckle contrast is defined as the normalized standard

deviation σI/〈I〉 with σI =
√

Var(I). The second moment of the intensity is readily obtained
from the probability density using an integration by part:

〈I2
〉 =

∫
∞

0
I2 p(I) dI = 2 〈I〉2 . (6.8)

We end up with

Var(I) = 〈I〉2 (6.9)

which is a feature of the Rayleigh statistics. In terms of speckle contrast, this is equivalent to

σI

〈I〉
= 1 . (6.10)

A speckle pattern exhibits a large contrast, with intensity fluctuations on the same order as
the averaged value. This is consistent with the fact that the intensity very frequently drops to
zero.
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6.5 Intensity statistics of unpolarized light

Expression (6.7) describes the intensity statistics for a scalar wave. In optics, this would
correspond to the intensity of a linearly polarized field, measured after a polarizer. Finding
the statistical distribution of the full intensity, measured without reducing the field to one of
its components, is a more complicated task. Here we show how to find the statistics in the
particular case of a speckle produced with unpolarized light.

When the speckle pattern is observed in the far field, the field is locally equivalent to a plane
wave and only two components Eα and Eβ need to be accounted for. The statistical distribution
of the intensity I = |Eα|2 + |Eβ|2 can be deduced from that of Iα = |Eα|2 and Iβ = |Eβ|2. Since
for unpolarized light the full intensity I is the sum of the two independent random variables
Iα and Iβ, its probability density p(I) is the convolution product of the probability densities of
Iα and Iβ, both being given by Eq. (6.7). Noticing that 〈Iα〉 = 〈Iβ〉 = 〈I〉/2, the convolution
product takes the form:

p(I) =
( 2
〈I〉

)2 ∫ I

0
exp

[
−

2(I − x)
〈I〉

]
exp

(
−

2x
〈I〉

)
dx (6.11)

and p(I) = 0 for I < 0. This leads immediately to the final result

p(I) =
( 2
〈I〉

)2

I exp
(
−

2I
〈I〉

)
for I > 0 (6.12)

p(I) = 0 for I < 0 .

In this modified Rayleigh statistics, that applies to a two-dimensional unpolarized field, the
most likely value of the intensity is not zero. Moreover, this distribution leads to a reduced
speckle contrast σI/〈I〉 = 1/

√
2 (the calculation of the speckle contrast for unpolarized light

is left as an exercise).
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Chapter 7

Dynamic light scattering

In this chapter we study light scattering by an ensemble of particles in motion. A typical
system is a colloidal suspension with particles under Brownian motion. Another example
is a biological tissue in the presence of blood flow. In this situation, the scattered intensity
fluctuates in time, as the result of the time dependent phase shifts between the fields scattered
by different particles. We will show that the time fluctuations of the field or the intensity carry
information on the dynamics of the particles. For the sake of illustration, we will focus on
Brownian motion of particles in a fluid. Dynamic light scattering is a widespread technique in
soft matter physics and in biomedical optics.

7.1 Single scattering regime

A typical geometry in a dynamic light scattering experiment is sketched in Fig. 7.1. The figure
represents a configuration using transmitted light, but the analysis developed in this chapter
is valid for both reflection and transmission geometries.

In the single scattering regime, we assume that the sample size is L ∼ `s, with `s the scattering
mean free path. The medium is illuminated by a monochromatic plane wave with frequency
ω, complex amplitude E0 and wavevector ki. One measures the field scattered in a direction
defined by wavevector ks. This field results from the superposition of the waves scattered
by all scatterers. Due to their motion, the phase shifts between the scattered waves change
in time, and the amplitude of the scattered field fluctuates in time. We assume that the
fluctuations occur on a time scale much larger than 2π/ω, so that the field remains quasi-
monochromatic, and can be written in the form E(t) exp(−iωt), with E(t) a slowly varying
complex amplitude. Note that since the motion of the scatterers induces Doppler shifts that
remain small compared to ω, dynamic light scattering (DLS) in the single scattering regime
is also referred to as Quasi-Elastic Light Scattering (QELS) [20].
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z
z = 0 z = L

�r(⌧)
✓

ki

ks E(t)

E(t + ⌧)

Figure 7.1: Dynamic light scattering in the single scattering regime. ∆r(τ) is the displacement
of a scatterer between times t and t + τ. This displacement induces a phase shift between the
scattered fields E(t) and E(t + τ).

In order to characterize the field fluctuations in time, we introduce the field correlation function
G1(τ) = 〈E(t) E∗(t+τ)〉, where 〈...〉 denotes an average over the motion of the particles. In the
single-scattering regime, the far-field scattered amplitude in the direction defined by wavevector
ks reads

E(t) = S(q)
exp(ik0r)

r
E0

∑
j

exp
[
−iq · r j(t)

]
(7.1)

where q = ks−ki, k0 = ω/c = 2π/λ, r j(t) the position of particle number j at time t, and S(q)
the scattering amplitude of a single scatterer (introduced in chapter 1) which is assumed to
depend only on q = |q|. This leads to the following expression of the time correlation function

G1(τ) = |S(q)|2
|E0|

2

r2

∑
j

〈
exp

[
iq · ∆r j(τ)

]〉
(7.2)

where ∆r j(τ) = r j(t + τ) − r j(t) is the displacement of particle number j between time t and
time t + τ. In this expression we have also assumed that the displacements of two different
particles are uncorrelated. For an ensemble of N identical particles, the average value in the
summation is the same for all particles, and we end up with

G1(τ) = N |S(q)|2
|E0|

2

r2

〈
exp

[
iq · ∆r(τ)

]〉
. (7.3)

The average in this equation has to be taken over the random variable ∆r(τ). In the case of
three-dimensional Brownian motion with a diffusion constant DB, the statistical distribution
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of the displacements is isotropic and Gaussian, with a probability density

P[∆r(τ)] =
1

(4πDB τ)3/2 exp
[
−∆r(τ)2

4DBτ

]
(7.4)

where ∆r(τ) = |∆r(τ)|. The average in Eq. (7.3) can be performed analytically. Introducing
the normalized correlation function g1(τ) = G1(τ)/G1(0) for convenience, we have

g1(τ) = 〈exp[iq · ∆r(τ)]〉
= 〈exp[iqx∆x(τ)]〉 〈exp[iqy∆y(τ)]〉 〈exp[iqz∆z(τ)]〉 (7.5)

where each average term can be calculated using the result∫ +∞

−∞

exp(ipX) exp(−aX2/2) dX = (2π/a)1/2 exp[−p2/(2a)] (7.6)

and the probability density in Eq. (7.4). We end up with

g1(τ) = exp
(
−DB q2 τ

)
. (7.7)

The modulus of the scattered wavevector is q = 2 k0 sin(θ/2), with θ the scattering angle
defined in Fig. 7.1. Equation (7.7) shows that from a measurement of g1(τ) one can deduce
the diffusion constant DB of the Brownian particles. A widespread application of DLS in the
single scattering regime is the measurement of the size of colloidal particles. Indeed, DB is
connected to the radius R of the particles and the viscosity η of the fluid through the Einstein
relation DB = kBT/(6πηR), with T the temperature and kB the Boltzmann constant.

7.2 Measured signal. Siegert relation

In practice one often measures the intensity correlation function G2(τ) = 〈I(t) I(t + τ)〉, with
I(t) = |E(t)|2, instead of the field correlation G1(τ). When the fields scattered by different
particles can be considered as uncorrelated, a simple relation exist between G2(τ) and G1(τ).

Using Eq. (7.1), the intensity correlation function can be written

G2(τ) = |S(q)|4
|E0|

4

r4

∑
j,k,l,m

〈exp
[
−iq · r j(t)

]
exp

[
iq · rk(t)

]
exp

[
−iq · rl(τ)

]
exp

[
iq · rm(τ)

]
〉 .

(7.8)
Assuming that the motions of different particles are uncorrelated, the only non vanishing terms
in the average are those corresponding to j = k = l = m, to j = k and l = m with k , l, and
j = m and k = l with j , k, so that

G2(τ) = |S(q)|4
|E0|

4

r4

N2 +
∑
j,k

〈
exp

[
−iq · ∆r j(τ)

]〉 〈
exp

[
iq · ∆rk(τ)

]〉 . (7.9)
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Since the average is the same for all particles, we obtain

G2(τ) = |S(q)|4
|E0|

4

r4

[
N2 + N(N − 1)

〈
exp

[
−iq · ∆r(τ)

]〉2
]
. (7.10)

Using Eq. (7.3), and assuming a large number of particles N � 1, the above expression can
be cast in the following form:

G2(τ) = |G1(0)|2 + |G1(τ)|2. (7.11)

This relation, known as the Siegert relation, shows that the intensity correlation function can
be obtained from the square modulus of the field correlation function. In terms of normalized
correlation functions g1(τ) = 〈E(t) E∗(t + τ)〉/〈|E(t)|2〉 and g2(τ) = 〈I(t) I(t + τ)〉/〈I(t)〉2, the
Siegert relation simplifies into

g2(τ) = 1 + |g1(τ)|2. (7.12)

This relationship is frequently used in the analysis of DLS experiments. It has been derived
here in the single scattering regime. In the multiple scattering regime, this relations holds
provided that the field can be considered as a Gaussian variable (see chapter 6). In this case
the intensity correlation function factorizes into products of second-order correlation functions,
this factorization leading to the Siegert relation. Note that taken at τ = 0, the Siegert relation
(7.11) leads to 〈I2

〉 = 2〈I〉2, which is a feature of the Rayleigh statistics derived in chapter 6.

7.3 Multiple scattering regime. Diffusing-Wave Spec-
troscopy

When the system size L becomes larger than the scattering mean free path `s, the single
scattering approximation is no more valid. With reference to Fig. 7.2, we shall now study the
time fluctuations of the field resulting from the superposition of multiply scattered waves.

It is convenient to use the representation of the field as a summation over scattering sequences,
as described in chapter 3. The amplitude of the scattered field E(t) can be written

E(t) = E0

∞∑
n=1

∑
Sn

ASn(t) exp[iφSn(t)] (7.13)

where E0 is the amplitude of the incident plane wave. In this representation, a scattering
sequence with n scattering events is written as Sn = {r1(t), r2(t)...rn(t)}, where r j(t) is the
position of scatterer number j at time t. The change in amplitude and phase created by the
sequence Sn are ASn(t) and φSn(t), respectively. The time correlation function of the field
directly follows:

G1(τ) = |E0|
2
∑

n

∑
Sn

∑
n′

∑
S′n′

〈ASn(t)AS′n′ (t + τ) exp[iφSn(t)] exp[−iφS′n′ (t + τ)] 〉 (7.14)



7.3. MULTIPLE SCATTERING REGIME. DIFFUSING-WAVE SPECTROSCOPY 77

z
z = 0 z = L

ki

kf

E(t)

E(t + ⌧)

Figure 7.2: Schematic representation of the field resulting from a scattering sequence with
multiple scattering events, at two differnet times t and t + τ. As a consequence of the motion
of scatterers, the accumulated phase shifts along the sequences at t and t + τ are different,

where 〈...〉 denotes an average over the motion of the particles. Under the assumptions of a
fully developed speckle (see chapter 6), the complex amplitude resulting from two different
sequences are uncorrelated, and the output amplitude and phase shift for a given sequence are
also uncorrelated. The preceding expression can be simplified into

G1(τ) = |E0|
2
∑

n

∑
Sn

〈ASn(t)ASn(t + τ) 〉 〈exp[iφSn(t) − iφSn(t + τ)] 〉. (7.15)

Due to the random motion of the particles, the phase shift along a scattering sequence will
decorrelate much faster than the amplitude when τ increases. We can assume 〈ASn(t)ASn(t +
τ)〉 ' 〈A2

Sn
〉 and write

G1(τ) = |E0|
2
∑

n

∑
Sn

〈A2
Sn
〉 〈exp[iφSn(t) − iφSn(t + τ)] 〉 . (7.16)

We are left with the evaluation of the average of the phase term. The phase difference due to
the motion of the particles, along a sequence with n scattering events, can be written using
the scattered wavevector q j of an individual scattering event, leading to

G1(τ) = |E0|
2
∑

n

∑
Sn

〈A2
Sn
〉

〈
exp

i n∑
j=1

q j · ∆r j(τ)


〉
. (7.17)

In the averaging process, both q j and ∆r j(τ) are random variables (this is a major difference
with the single scattering regime where q was fixed). An exact calculation would require
handling the correlation between the scattered wavevectors q j and q j+1 between successive
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scattering events, as well as the constraint
∑

j q j = k f − ki, with ki and k f the incident and
observation wavevectors. Although this can be done in numerical simulations, a closed-form
expression can be obtained only at the cost of a series of approximations. We first assume
that the average over q j is independent on the motion of the particles, and depends only on
the phase function of an individual scatterer and on the number of scattering events. In these
conditions, the averaging processes over q j and ∆r j(τ) are considered as independent. For
Brownian motion, the average over ∆r j(τ) is performed using Eq. (7.7). We obtain

G1(τ) = |E0|
2
∑

n

∑
Sn

〈A2
Sn
〉

〈
exp

−DB τ
n∑

j=1

q2
j


〉

(7.18)

where q j = |q j|. The average over q j remains to be performed. As the result must be
independent on the scattering sequence, it is useful to introduce

P(n) =
∑
Sn

〈A2
Sn
〉 (7.19)

as the fraction of the incident power that has undergone n scattering events, and rewrite
Eq. (7.18) in the form

G1(τ) = |E0|
2
∑

n

P(n)
〈

exp

−DB τ
n∑

j=1

q2
j


〉
. (7.20)

To evaluate the average over q2
j , we use a first-cumulant expansion:〈

exp

−DB τ
n∑

j=1

q2
j


〉
'

〈
1 −DB τ

n∑
j=1

q2
j

〉

= 1 −DB τ
n∑

j=1

〈q2
j 〉

= 1 − n DB τ〈q2
j 〉

' exp(−n DB τ〈q2
j 〉) . (7.21)

If θ denotes the scattering angle of an elementary scattering process, one has

〈q2
j 〉 = 2k2

0〈1 − cosθ〉 = 2k2
0(1 − g) = 2k2

0
`s

`t
(7.22)

where g is the anisotropy factor and `t = `s/(1 − g) is the transport mean free path. With
these simplifications, the field correlation function finally reads

G1(τ) = |E0|
2
∑

n

P(n) exp
(
−2k2

0
`s

`t
n DB τ

)
. (7.23)
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For practical calculations, it is often easier to manipulate an integral instead of a series. To
proceed, we introduce the length s of a scattering sequence with n scattering events, through
s = n`s (note that this relation is in principle only valid on average). Using the probability
density P(s) of a sequence with length s, we get the final expression of the normalized field
correlation function:

g1(τ) =

∫
∞

0
P(s) exp

(
−2

τ
τ0

s
`t

)
ds (7.24)

with τ0 = (k2
0 DB)−1. This expression is widely used in the analysis of dynamic light scattering

experiments in the multiple scattering regime. The associated technique is often referred to
as Diffusing Wave Spectroscopy (DWS) [21].

The probability density P(s), also called path-length distribution, can be obtained as the
solution of a time-dependent transport equation, as the radiative transfer equation (RTE) or
the diffusion equation. Indeed, from the time-dependent output flux φ(t) resulting from an
incident pulse Iinc δ(t), one deduces P(s) = φ(t = s/vE)/Iinc where vE is the energy velocity in
the medium (assumed to be uniform). Moreover, since Eq. (7.24) is mathematically a Laplace
transform, on gets g1(τ) directly from the solution of the RTE or diffusion equation in the
Laplace domain [21].

Example

Consider a thick slab (assumed to be semi-infinite), illuminated by a plane wave, and collection
of light at one point in the surface. The explicit calculation of the integral in Eq. (7.24) can be
performed analytically (not shown) [21]. The result is easily expressed in terms of the variable
x =
√

6τ/τ0. A short time scale x� 1, it is simply

g1(τ) ' exp(−γx) (7.25)

with γ = 5/3 (this factor results from the boundary condition in the diffusion approximation).
By fitting the exponential decay of the correlation function at short time, one can deduce τ0

and DB.
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Chapter 8

Coherent backscattering

The measurement of the angular dependence of the light intensity reflected from a thick
scattering medium reveals the existence of a peak in the exact backscattering direction. This
effect, known as coherent backscattering, is a signature of the underlying coherence of the
multiple scattering process, and a consequence of the reciprocity theorem in wave physics.
Coherent backscattering is an example of a mesoscopic phenomenon, in which the wave nature
of the transport process plays a crucial role.

8.1 Reflected far field

We consider a thick scattering medium (assumed semi-infinite) illuminated by a plane wave
with wavevector ka, as represented in Fig. 8.1. The reflected intensity is observed in the far
field in a direction defined by wavevector kb. We define the direction Oz as being perpendicular
to the interface (the latter coincinding with the plane z = 0), and use specific notations for the
projection of vectors along the (Ox,Oy) plane, such that ra = (ρa, z = 0), ka = [qa, kz(qa)],
etc.

The scattered field in the plane z = 0 is linearly related to the incident field E0 exp(ika · r).
Using the amplitude propagator h(rb, ra) introduced in chapter 3, it can be written as

E(rb) =

∫
z=0

h(rb, ra) E0 exp(iqa · ρa) d2ρa (8.1)

where ra = (ρa, z = 0) and rb = (ρb, z = 0) are the input and output points. The field scattered
in direction kb in the far field is of the form

E(r) =
kz(qb)
2iπ

E(qb)
exp(ik0r)

r
(8.2)
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Figure 8.1: Reflection on a scattering medium illuminated by an incident plane wave with
wavevector ka. One observes the far-field intensity reflected along direction kb.

where kz(qb) = (k2
0 − q2

b)1/2 is the component of kb along the z direction, k0 = ω/c = 2π/λ,
and E(qb) is the Fourier transform of the scattered field in the plane z = 0:

E(qb) =

∫
z=0

E(ρb, z = 0) exp(−iqb · ρb) d2ρb . (8.3)

Equation (8.2) can be obtained using the plane wave expansion of the scattered field, and
taking the asymptotic expression when k0r→∞ (see for example [22]). Denoting by E(ka,kb)
the reflected amplitude in direction kb in the far field, that we define as E(ka,kb) = qbE(Kb)
(we forget the factor 1/(2iπ)), we have

E(ka,kb) = kz(qb)
∫

z=0
E(ρb, z = 0) exp(−iqb · ρb) d2ρb

= kz(qb) E0

∫
z=0

h(rb, ra) exp(iqa · ρa − iqb · ρb) d2ρa d2ρb . (8.4)

8.2 Reflected diffuse intensity

The reflected diffuse intensity in direction kb is Id(ka,kb) = 〈|E(ka,kb)|2〉. Using Eq. (8.4) it
takes the following form:

Id(ka,kb) = k2
z(qb) |E0|

2
∫
〈h(rb, ra)h∗(rb′ , ra′)〉 exp[iqa · (ρa − ρa′)]

× exp[−iqb · (ρb − ρb′)] d2ρad2ρbd2ρa′d2ρb′ . (8.5)

In the limit k0`s � 1, the ladder approximation, that is qualitatively introduced in chapter 3, is
expected to give the leading contribution, corresponding to the diagrammatic representation
in Fig. 8.2.
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Figure 8.2: Graphical (left) and diagrammatic (right) representations of the diffuse reflection
process in the ladder approximation.

In the ladder approximation, we can write the intensity correlator of the amplitude propagator
as (see Eq. 3.33)

〈h(rb, ra)h∗(rb′ , ra′)〉 ' P(rb, ra) δ(ra − ra′)δ(rb − rb′) (8.6)

where P(rb, ra) is the intensity propagator connecting ra to rb. In the reflection geometry
considered here, and assuming statistical translational invariance of the medium along the
x − y plane, it only depends on ρb − ρa. We finally end up with

Id(ka,kb) = k2
z(qb) |E0|

2
∫

P(ρb − ρa) d2ρad2ρb . (8.7)

8.3 Reciprocity of the amplitude propagator

The amplitude propagator is connected to the reflection part of the scattering matrix r(q,q′).
Indeed, by definition of the scattering matrix, the Fourier transform of the reflected field in
the plane z = 0, defined as

Es(q) =

∫
E(ρ) exp(−iq · ρ) d2ρ , (8.8)

is connected to the Fourier transform of the incident field by

E(q) =

∫
r(q,q′) Einc(q′) d2q′. (8.9)

From Eqs. (8.1) and (8.9) it is easy to show that

h(r, r′) =

∫
r(q,q′) exp(iq · ρ − iq′ · ρ′)

d2q d2q′

4π2 (8.10)

where r = (ρ, z = 0) and r′ = (ρ′, z = 0) are two points on the interface. The amplitude
propagator is therefore the Fourier transform of the reflection part of the scattering matrix.
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Inverting (8.10) yields

r(q,q′) =

∫
h(r, r′) exp(−iq · ρ + iq′ · ρ′) d2ρ d2ρ′. (8.11)

In any linear medium, and for materials with symmetric constitutive dielectric and permittivity
tensors, the reciprocity theorem holds. In terms of the scattering matrix and for a reflection
geometry, it reads (for derivations of the reciprocity relations, see for example Ref. [22])

kz(q) r(q,q′) = kz(q′) r(−q′,−q) . (8.12)

From Eqs. (8.11) and (8.12), we obtain the following reciprocity relation for the amplitude
propagator:

kz(q)
∫

h(r, r′) exp(−iq · ρ + iq′ · ρ′) d2ρ d2ρ′ =

kz(q′)
∫

h(r′, r) exp(−iq · ρ + iq′ · ρ′) d2ρ d2ρ′. (8.13)

8.4 Coherent backscattering enhancement

In the computation of the reflected diffuse intensity, the reciprocity relation (8.13) induces
contributions that are not accounted for in the ladder approximation, and that cannot be
neglected even when k0`s � 1. Using Eq. (8.13) to transform h∗(rb′ , ra′) into h∗(ra′ , rb′) in
Eq. (8.5), we obtain

Ic(ka,kb) = kz(qb)kz(qa) |E0|
2
∫
〈h(rb, ra)h∗(ra′ , rb′)〉 exp[iqa · (ρa − ρa′)]

× exp[−iqb · (ρb − ρb′)] d2ρad2ρbd2ρa′d2ρb′ . (8.14)

This expression can be understood as describing the interference between the field produced
by a scattering sequence, and the field produced by the reciprocal sequence (same sequence
followed in reverse order). This contribution, sometimes refereed to as cooperon, is graphically
illustrated in Fig. 8.3. A simple change of variables in Eq. (8.14) allows us to rewrite it in the
form

Ic(ka,kb) = kz(qb)kz(qa) |E0|
2
∫
〈h(rb, ra)h∗(rb′ , ra′)〉 exp[iqa · (ρa − ρb′)]

× exp[−iqb · (ρb − ρa′)] d2ρad2ρbd2ρa′d2ρb′ . (8.15)

Making use again of (8.6) to simplify the correlator of the amplitude propagator leads to

Ic(ka,kb) = kz(qb)kz(qa) |E0|
2
∫

P(ρb − ρa) exp[i(qa + qb) · (ρa − ρb)]d
2ρad2ρb. (8.16)
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Figure 8.3: Graphical (left) and diagrammatic (right) representations of the reciprocal scat-
tering sequences contributing to coherent backscattering. The diagram on the right is the
maximally-crossed diagram.

This expression describes a contribution to the diffuse reflected intensity that cannot be ne-
glected in the vicinity of the backscattering direction. Indeed, in the exact backscattering
direction defined by kb = −ka, Eq. (8.16) is identical to Eq. (8.7), so that:

Ic(ka,kb = −ka) = Id(ka,kb = −ka) . (8.17)

Therefore, the backscattered diffuse intensity is twice the value predicted in the ladder ap-
proximation. This is a consequence of wave reciprocity. This phenomenon, known as coherent
backscattering, results from a constructive interference between the fields scattered along re-
ciprocal scattering sequences. Reciprocity ensures that in the exact backscattering direction,
these two fields have identical phases, thus producing a constructive interference.

8.5 Coherent backscattering cone and angular width

It is possible to calculate explicitly the intensity distribution around the backscattering direction
kb = −ka. Let us introduce the change of variables X = ρa − ρb and ρ = (ρa + ρb)/2 (with
unit Jacobian) into Eq. (8.16). We obtain

Ic(ka,kb) = kz(qb)kz(qa) |E0|
2

[∫
d2ρ

]
P̃(qa + qb) (8.18)

where P̃(q) is the Fourier transform of the transport probability. The remaining integral is in
practice not infinite, and corresponds to the size S of the illuminated region on the interface.
We end up with

Ic(ka,kb) = kz(qb)kz(qa) S |E0|
2 P̃(qa + qb) (8.19)

showing that the coherent backscattering intensity Ic is proportional to the Fourier transform
of the transport probability P(r − r′) connecting two points r and r′ on the surface.



86 CHAPTER 8. COHERENT BACKSCATTERING

The transport probability can be evaluated using the diffusion approximation. For a non-
absorbing semi-infinite medium, its expression can be calculated using the formalism of chap-
ter 5. Assuming q`t � 1 in the diffusive regime, the calculation (not shown here- see for
example Ref. [11] for solutions of the diffusion equation in simple geometries) leads to

P̃(q) ' A[1 − (2/3)q`t] (8.20)

where A is a constant that we do not specify. Inserting this result into Eq. (8.19) leads to

Ic(ka,kb) = kz(qb)kz(qa) S |E0|
2A[1 − (2/3)δq `t] (8.21)

where we have written qb = −qa +δq, and δq = |δq| (see Fig. 8.4). This can also be rewritten
as

Ic(ka,kb) ' Ic(δq = 0)[1 − (2/3)δq `t] (8.22)

ka
kb

✓

qa
qb

�q

Figure 8.4: Wavevectors involved in the computation of the backscattered diffuse intensity.

Equation (8.21) describes the angular dependence of the reflected intensity around the backscat-
tering direction δq = 0. Writing δq ' k0θ, with θ the angular deviation from the exact
backscattering direction, we see that the backscattering intensity peak has an angular width
∆θ ' λ/`t. We also see that the backscattering peak exhibits a triangular singularity. This
singularity is a signature of the long scattering paths involved in the multiple scattering process.
In the presence of absorption, the contribution of these long paths is reduced, and both the
amplitude and the sharpness of the backscattering peak decrease. All these features have been
observed experimentally. An example of a measured backscattering peak in a non-absorbing
medium is shown in Fig. 8.5. The factor of two in the enhancement, the triangular shape of
the backscattering cone and the dependence of the angular width on `t are clearly visible.
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Figure 8.5: Experimental evidence of coherent backscattering of light from a strongly scat-
tering medium. Narrow cone: k`t ' 23. Wide cone: k`t ' 6 (with k the wavenumber in the
medium). From D. Wiersma et al., Phys. Rev. Lett. 74, 4193 (1995).
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Chapter 9

Angular speckle correlations

In this chapter we study the far-field angular correlation function of the intensity in a speckle
pattern produced in transmission through a slab of scattering material. We restrict the discus-
sion to short-range correlations in speckles obeying Gaussian statistics, and focus on practical
implications.

9.1 Definition of the angular correlation function

With reference to the geometry in Fig. 9.1, we study the speckle pattern produced in trans-
mission through a slab of thickness L, assumed to be infinite along the transverse directions
Ox and Oy.

ka

ka0
kb0

kb

rb

rb0
ra0

ra

z = 0 z = L
z

Figure 9.1: Geometry used for the calculation of the angular correlation function of the
intensity transmitted through a slab of scattering material.
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In the analysis of a far-field speckle pattern, a useful quantity is the correlation function
between the intensity I(ka,kb) emerging in direction kb when the medium is illuminated by a
plane wave with wavevector ka, and the intensity I(ka′ ,kb′) observed in direction kb′ with an
illumination from direction ka′ . We use specific notations for the projection of vectors along
the (Ox,Oy) plane, such that ra = (ρa, z = 0), rb = (ρb, z = L), ka = [qa, kz(qa)], etc.

The angular correlation function of the intensity fluctuations δI = I − 〈I〉 is defined as

CI
aba′b′ =

〈δI(ka,kb) δI(ka′ ,kb′)〉
〈I(ka,kb)〉〈I(ka′ ,kb′)〉

. (9.1)

In the regime k0`s � 1, with k0 = ω/c = 2π/λ and `s the scattering mean free path, we can
assume that the field obeys Gaussian statistics (or equivalently that transport can be described
in the ladder approximation introduced qualitatively in chapter 3). As a result, the intensity
correlation function can be factorized as the square of the field correlation function:1

CI
aba′b′ = |CE

aba′b′ |
2 (9.2)

and we are left with the determination of the normalized angular correlation function of the
field, that reads

CE
aba′b′ =

〈E(ka,kb) E∗(ka′ ,kb′)〉√
〈|E(ka,kb)|2〉

√
〈|E(ka′ ,kb′)|2〉

. (9.3)

In this expression we have denoted by E(ka,kb) the far-field amplitude of the scattered field
in direction kb, for an illumination by a plane wave with wavevector ka.

9.2 Field angular correlation function in transmission

The scattered field E(ka,kb) can be written in terms of the amplitude propagator h(rb, ra)
introduced in chapter 3. For an incident plane wave E0 exp(ika · r), the field emerging at point
rb on the exit surface z = L is

E(ρb, z = L) =

∫
z=0

h(rb, ra) E0 exp(iqa · ρa) d2ρa (9.4)

where ra = (ρa, z = 0) and rb = (ρb, z = L) are the input and output points. The far-field
scattered in direction kb takes the form (see for example Ref. [22])

E(r) =
kz(qb)
2iπ

E(qb)
exp(ikr)

r
(9.5)

1A feature of Gaussian variables is that high-order correlation functions can always be factorized into
products of second-order correlation function. An example is the Siegert relation derived in chapter 7.
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where kz(q) = (k2
0 − q2)1/2 is the z-component of the wavevector k and E(qb) is the Fourier

transform of the scattered field in the plane z = L :

E(qb) =

∫
z=L

E(ρb, z = L) exp(−iqb · ρb) d2ρb . (9.6)

Identifying E(ka,kb) and kz(qb)E(qb) leads to

E(ka,kb) = kz(qb) E0

∫
z=0

∫
z=L

h(rb, ra) exp(iqa · ρa − iqb · ρb) d2ρa d2ρb . (9.7)

This is the expression of the scattered far field. In practice the far-field conditions are met in
the focal plane of a converging lens, or in the Fourier plane of a microscope objective.

From this expression, the angular correlation function of the field is readily deduced:

〈E(ka,kb) E∗(ka′ ,kb′)〉 = kz(qb)kz(qb′) |E0|
2
∫

z=0

∫
z=L
〈h(rb, ra)h∗(rb′ , ra′)〉

× exp(iqa · ρa − iqb · ρb − iqa′ · ρa′ + iqb′ · ρb′) d2ρad2ρbd2ρa′d2ρb′ .

(9.8)

The integrals sum up all entry points ρa and ρ′a and exit points ρb and ρ′b (see Fig. 9.1). In
the ladder approximation, that has been introduced qualitatively in chapter 3, the correlator
of the amplitude propagator can be simplified into (see Eq. 3.33):

〈h(rb, ra)h∗(rb′ , ra′)〉 ' P(rb, ra) δ(ra − ra′)δ(rb − rb′) (9.9)

where P(rb, ra) is the intensity propagator from ra to rb. In the geometry considered here, due
to translationnal invariance along the transverse directions, P(rb, ra) depends on ra and rb only
through the difference ρb − ρa, and we can rewrite Eq. (9.8) in the form

〈E(ka,kb) E∗(ka′ ,kb′)〉 = kz(qb)kz(qb′) |E0|
2
∫

z=0

∫
z=L

P(ρb − ρa)

× exp(i∆qa · ρa − i∆qb · ρb) d2ρad2ρb.

(9.10)

We have introduced the notations ∆qa = qa − qa′ and ∆qb = qb − qb′ for clarity. In order to
simplify the integrals, we perform the change of variables X = ρa − ρb and ρ = (ρa + ρb)/2
(with unit Jacobian), leading to

〈E(ka,kb) E∗(ka′ ,kb′)〉 = kz(qb)kz(qb′) |E0|
2
∫

P(X) exp[i(∆qa + ∆qb) · X/2] d2X

×

∫
exp[i(∆qa − ∆qb) · ρ] d2ρ. (9.11)
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The first integral is the Fourier transform P̃(q) of P(X), calculated for q = (∆qa + ∆qb)/2.
The second integral is the Dirac distribution 4π2 δ(∆qa − ∆qb). We finally end up with a
simple expression for the field correlation function:

〈E(ka,kb) E∗(ka′ ,kb′)〉 = kz(qb)kz(qb′) |E0|
2 P̃(∆qa) δ(∆qa − ∆qb). (9.12)

This result shows that the angular correlation function of the field is different from zero only
when ∆qa = ∆qb. Moreover, when ∆qa = |∆qa| increases, the range of the correlation is
described by the Fourier transform P̃(∆qa) of the intensity propagator.

9.3 Intensity propagator in the diffusion approximation

Considering a slab with thickness L� `t, the intensity propagator can be calculated using the
diffusion approximation. Consider the solution of the diffusion equation in a non absorbing
medium and a delta function source term:

∇
2
ra

L(rb, ra) = −δ(rb − ra) (9.13)

with appropriate boundary conditions on the slab surfaces. In other words, L(rb, ra) is the
Green function of the diffusion equation. This equation in a slab geometry can be solved
in Fourier space, using the boundary conditions described in Appendix C. The calculation is
not detailed here (see for example Ref. [11] for solutions of the diffusion equation in simple
geometries). Writing L̃(q, z, z′) the Fourier transform of the propagator L(ρb − ρa, z, z

′) with
respect to ρb − ρa, we obtain

L̃(q, z = L, z′ = 0) =
qz2

0

sinh(qL) + 2qz0 cosh(qL) + (qz0)2 sinh(qL)
, (9.14)

where q = |q| and z0 = (2/3)`t is the extrapolation distance that appears in the boundary con-
ditions (see Appendix C). In the regime q`t � 1, the intensity propagator, that is proportionnal
to L̃, takes the form

P̃(q) = A
q

sinh(qL)
(9.15)

where A is a prefactor that we do not need to specify.

9.4 Intensity correlation function and memory effect

An explicit expression of the field correlation function is obtained by inserting (9.15) into
(9.12), leading to

〈E(ka,kb) E∗(ka′ ,kb′)〉 = A kz(qb)kz(qb′) |E0|
2 ∆qa

sinh(∆qa L)
δ(∆qa − ∆qb). (9.16)
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The normalized correlation function of the intensity can be deduced using Eqs. (9.2) and (9.3).
It can be formally written as

CI
aba′b′ =

∣∣∣∣∣ ∆qa L
sinh(∆qa L)

∣∣∣∣∣2 δ∆qa,∆qb (9.17)

where δ∆qa,∆qb is a Kronecker delta.

This angular correlation function describes the so-called “memory effect”. Indeed, it shows
that by changing the angle of incidence from qa to qa′ = qa+∆qa, the speckle pattern observed
in direction qb′ = qb+∆qa remains correlated to the initial speckle pattern observed in direction
qb (the speckle pattern seems to move as a whole). This effect remains visible as long as
the amplitude of the correlation does not vanish when ∆qa increases. When the condition
∆qaL � 1 is satisfied, CI

aba′b′ ∼ exp(−2∆qaL), showing that the angular intensity correlation
function calculated in the ladder approximation is a short-range correlation function.

9.5 Size of a speckle spot

In a speckle pattern, one observes a complex distribution of bright and dark spots (see Fig. 6.1
in chapter 6). The intensity correlation function can be used to characterize the typical size
of a speckle spot.

To address this question, we still consider the transmission geometry in Fig. 9.1, but with
an illuminating beam of finite transverse size. In the paraxial approximation, the complex
amplitude of the field produced by such a beam in the plane z = 0 can be written formally as
E0(ρa) exp(iqa · ρa). In these conditions, Eq. (9.10) is transformed into

〈E(ka,kb) E∗(ka′ ,kb′)〉 = kz(qb)kz(qb′)
∫

z=0

∫
z=L

H(ρa) P(ρb − ρa)

× exp(i∆qa · ρa − i∆qb · ρb) d2ρad2ρb

(9.18)

where H(ρa) = |E0(ρa)|
2 is the intensity distribution of the beam in the input plane z = 0.

Using again the same change of variables as that leading to Eq. (9.11), and performing the
Fourier transforms, leads to

〈E(ka,kb) E∗(ka′ ,kb′)〉 = kz(qb)kz(qb′) P̃(∆qb) H̃(∆qb − ∆qa) . (9.19)

A measure of the angular size of a speckle spot is the width of the correlation function (9.19),
considered as a function of the observation direction qb, and for a fixed direction of incidence
qa (in practice one usually measures the width of the intensity correlation function, that is
essentially the square modulus of the field correlation function). We therefore need to evaluate
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the width of 〈E(ka,kb) E∗(ka′ ,kb′)〉 considered as a function of ∆qb with ∆qa = 0. The result
depends on the respective widths of the two functions in the right-hand side in Eq. (9.19).

For a slab with thickness L� `t, the solution of the diffusion equation shows that P(ρa − ρb)
leads to a spatial distribution of diffuse intensity of size L in the outpout plane z = L. The
function H(ρa) has a width W, corresponding to the beam size in the plane z = 0. Two
different situations have to be considered.

Extended beam (W � L)

In this case the angular width of the correlation function is driven by the function H̃(∆qb).
This width is given by ∆qb ∼ 2π/W. If one observes the speckle pattern in the focal plane of
an imaging system with image focal length f , the size of the speckle spot is ∆R ∼ fλ/W.

Focussed illumination (W � L)

In this case the angular width of the correlation function is driven by the function P̃(∆qb). As
discussed in the previous section, this width is ∆qb ∼ 2π/L. This gives a speckle spot size
∆R ∼ fλ/L in the focal plane of an imaging system.

9.6 Number of transmission modes

In the case of an illumination with a beam of finite transverse size, the angular size of a speckle
spot can be associated with the size of a transmitted mode. This assertion is based on the
intuitive picture that two transmitted wavevectors will be independent (and will describe two
different modes) when their angular separation is larger than the angular range of the intensity
correlation function.

Let us denote by θ the angle between two transmitted wavevectors kb and kb′ . We have
|∆qb|

2
' |∆kb|

2 = 2k2
0 (1 − cosθ). For a beam of width W satisfying W � L, we have

|∆qb| ' 2π/W. Therefore the angle θ defines the angular extent of a mode when

2k2
0 (1 − cosθ) '

4π2

W2 (9.20)

The angle θ also corresponds to a solid angle through the relation ∆Ω = 2π(1 − cosθ),
so that a transmission mode corresponds to a solid angle ∆Ω ' πλ2/W2. The number of
transmission modes is evaluated as

Nmodes =
2π
∆Ω
'

2 W2

λ2 (9.21)
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This number of modes is analogous to the number of transverse modes that is used in transport
of waves through waveguides, as in mesoscopic electronic transport. It is also a reliable
evaluation of the number of degrees of freedom that are available to act on light transmission
through a disordered medium in the multiple scattering regime.
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Part IV

Appendices
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Appendix A

Scattering matrix for polarized light

In this appendix we briefly review the description of the scattering matrix for polarized light in
terms of the Stokes vector.

A.1 Scattering matrix

Following the traditon to work with the electric fied, the complex amplitude of the incident
plane wave is of the form

E0(r) = E0 exp(ikinc · r)

with E0 = E0 e0, the unit vector e0 describing the direction of polarization. The far field
amplitude of the scattered field can be written

Es(r) = S(u) E0
exp(ik0r)

r
(A.1)

which defines the scattering matrix S(u). Technically, S(u) is a second-rank tensor (that
transforms a vector into another vector). Indeed, there is no reason for Es and E0 to be
colinear.

The polarization state of the incident and scattered fields can be defined using two vector
components (the fields are transverse). To proceed, we need to define a reference plane, and
decompose the fields E0 and Es into their parallel( ‖) and perpendicular (⊥) components. The
reference plane is defined using the incidence direction (chosen to coincide with the z-axis)
and the scattering direction, as shown in Fig. A.1:

E0 = E‖0 e‖i + E⊥0 e⊥i

Es = E‖s e‖s + E⊥s e⊥s .
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Figure A.1: Geometry used to define the scattering matrix for polarized light. From Ref. [3].

Using these bases, the scattering matrix S(u) is usually written in the form [3](
E‖s
E⊥s

)
=

(
S2 S3

S4 S1

)
exp(ik0r)

r

(
E‖0
E⊥0

)
(A.2)

where each element of the scattering matrix is a function of the scattering direction (θ, φ), of
frequency, and depends on the type of particle.

In the particular case of spherical homogeneous particles, the scattering matrix has the following
properties:

• S3 = S4 = 0

• For forward scattering (θ = 0), S1(0) = S2(0) = S(0) .
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Finally, for electromagnetic waves, the scattering matrix also leads to a simple expression of
the optical theorem:

σe =
4π
k0

Im[e0 · S(uinc) e0] . (A.3)

Except for the projection of the scattering matrix on the direction of polarization of the incident
wave, the expression is similar to that obtained for scalar waves. We give the derivation of
Eq. (A.3) in chapter 2.

A.2 Stokes vector

The scattering matrix contains all information on the scattering process. In optics, we often
measure intensities rather than field amplitudes. It is convenient to introduce a description of
polarization in terms of intensity measurements. Using the basis defined in Fig. A.1, we have
seen that the fields are written in the form E = E‖ e‖ + E⊥ e⊥ (this decomposition holds for
the incident and the scattered fields). We can define four parameters [I,Q,U,V], constituting
the Stokes vector:

I = E‖E∗‖ + E⊥E∗
⊥

Q = E‖E∗‖ − E⊥E∗
⊥

U = E‖E∗⊥ + E∗
‖
E⊥

V = i(E‖E∗⊥ − E∗
‖
E⊥) . (A.4)

If we introduce the amplitudes and phases of the parallel and perpendicular components E‖ =
a‖ exp(iδ‖) et E⊥ = a⊥ exp(iδ⊥), the Stokes vector of the field E can be rewritten in the form

I = a2
‖

+ a2
⊥

Q = a2
‖
− a2
⊥

U = 2 a‖ a⊥ cos(δ‖ − δ⊥)
V = 2 a‖ a⊥ sin(δ⊥ − δ‖) . (A.5)

These expressions clearly show that the first two parameters measure the sum and difference of
intensity in the two components, while the other parameters measure the relative phases. The
Stokes vector contains the information on the relative amplitude and phases of the two vector
components of the field (and therefore on the polarization state), although it results only from
intensity measurements. More precisely, the four elements can be measured as follows:

• I : Total intensity.
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• Q : Difference between the intensity of the ‖ component and the intensity of the
⊥ component. Can be obtained from two intensity measurements, using a polarizer
oriented either along e‖ or along e⊥.

• U : Difference between two intensities I+ et I−. I+ is measured after a polarizer oriented
along the direction e‖ + e⊥. I− is measured after a polarizer oriented along the direction
e‖ − e⊥.

• V : Difference between the intensities of the right and left circular polarizations. The
connection between linear and circular polarizations is made by using the relation E =
E‖ e‖ + E⊥ e⊥ = Es eD + EG eG where the vectors defining the right and left circular

polarizations are eD = (e‖ + ie⊥)/
√

2 and eG = (e‖ − ie⊥)/
√

2.

A.3 Mueller matrix

In a scattering configuration, we can define a Stokes vector for both the incident and the
scattered fields. Using the definition of the scattering matrix, we can show that a linear
relation exists between the two Stokes vectors. The matrix that describes this linear relation
is known as the Mueller matrix. It is usually written in the following form [3]:

Id

Qd

Ud

Vd

 =


S11 . . S14

. .

. .
S41 . . S44




I0

Q0

U0

V0

 (A.6)

The concepts of Stokes vectors and Mueller matrix are useful to describe the transport of light
in complex media, accounting for the polarization degrees of freedom [14].



Appendix B

Examples of phase functions

We assume that the phase function depends only on cos Θ = u · u′.

B.1 Isotropic scattering

For isotropic scattering, the simplest model, the phase function is a constant: p(cos Θ) = 1.
This gives an anisotropy factor g = 0.

B.2 Rayleigh scattering

For particles much smaller than the wavelength, the electric dipole approximation applies.
This is the regime of Rayleigh scattering. For an unpolarized incident field, the Rayleigh phase
function is

p(cos Θ) =
3
4

(1 + cos2 Θ) . (B.1)

This phase function also leads to g = 0.

B.3 Henyey-Greenstein model

The Henyey-Greenstein phase function is parametrized only by the anisotropy factor g. Its
expression is

p(cos Θ) =
1 − g2√

(1 + g2 − 2 g cos Θ)3
. (B.2)
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The Henyey-Greenstein phase function is a convenient model to handle light propagation in
biological tissues.

B.4 Mie scattering

The Mie theory provides an exact solution to the problem of scattering of an incident plane
wave by a homogeneous spherical particle. From the knowledge of the refractive index of the
particle and of the host medium, of the wavelength in the host medium, and of the particle
radius, the Mie theory gives explicit expresssions of the cross sections and the phase function of
a single particle in the form of series. For an ensemble of identical particles in the independent
scattering regime, the phase function is that of a single particle. For a mixture of different
particles, one needs to average the phase function according to the relative number density of
each type of particle.

User-friendly solvers for the Mie theory are easily found on the internet.

B.5 Expansion on Legendre polynomials

An arbitrary phase function p(cos Θ) can be expanded on the basis of Legendre polynomials
Pn(x), in the form

p(cos Θ) =

∞∑
n=0

an Pn(cos Θ) (B.3)

where the an are coefficients that are specific for each phase function. In practice, the series
has to be truncated, and the number of terms to get convergence depends on the degree of
anisotropy of the phase function.

Using the normalization of the phase function, and the definition of the anisotropy parameter
g, we can show that a0 = 1 and a1 = 3g. For the particular case of the Henyey-Greenstein
phase function, we can calculate the an explicitly, and we have an = (2n + 1) gn.



Appendix C

Diffusion equation and boundary
conditions at an interface

In this appendix we address the question of the boundary conditions at a flat interface between
a scattering medium and a non scattering medium (as vacuum or air in optics). We assume
that the interface is illuminated by a plane wave at normal incidence (see Fig. C.1). Close to
the boundary, the conversion of the incident intensity into diffuse intensity occurs in a layer
with a thickness on the order of `s = 1/µs.

Z 

Z = 0 

I0 
θ

Figure C.1: Geometry used to study the boundary conditions in the diffusion approximation.
The medium z < 0 is non scattering, while the medium z > 0 is assumed to be strongly
scattering. The interface z = 0 is illuminated by a plane wave with intensity I0 (W.m−2).
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C.1 Diffusion equation with collimated illumination

In chapter 4, we have seen that the diffuse specific intensity obeys a RTE with a source
term resulting from the ballisitic intensity (Eq. 4.14). In steady-state, and in the geometry of
Fig. C.1 in which the specific intensity only depends on z and u due to translationnal invariance
along the x − y directions, we have

u ·
∂
∂z

Id(z,u) ez = −(µa + µs) Id(z,u) +
µs

4π

∫
4π

p(u · u′) Id(z,u′) dΩ′

+
µs

4π
p(u · ez) Ib(z) . (C.1)

Here the ballistic intensity is Ib(z) = I0 exp[−(µa + µs)z], where I0 is the intensity of the
incident wave (for simplicity we assume that both media are index matched so that here is no
specular reflection on the interface). We have used the notation ez for the unit vector along
the z direction.

Following the same procedure as in chapter 5, we can start from Eq. (C.1) and derive a
diffusion equation valid at large scales. After some technical calculations (that are left as
an exercise), we obtain a diffusion equation for the energy density U(z), with a source term
resulting from the ballistic incident intensity:

d2 U
dz2 − 3µa(µa + µ′s) U(z) = −

3µs(µa + µ′s)
vE

Ib(z) −
3µsg(µa + µs)

vE
Ib(z) . (C.2)

Here we use the notation µ′s = µs(1 − g) = 1/`t (sometimes denoted by reduced scattering
coefficient). Remember that since we have used the P1 approximation (see chapter 5), this
expression is a priori valid in the regime µa � µ′s. The energy current is q(z) = q(z) ez with

q(z) = −
vE

3(µa + µ′s)
dU
dz

+
µs g
µa + µ′s

Ib(z) . (C.3)

C.2 Boundary condition at z = 0

In order to get a boundary condition in terms of the energy density, we can use the fact that
the diffuse incoming flux vanishes at the interface (we follow the procedure in Ref. [16]). In
terms of the diffuse specific intensity, this reads as∫

2π
Id(z,u) u · ez dΩ = 0 for z = 0 (C.4)

where the angular integration is over directions satisfying u · ez > 0. Under the P1 approxima-
tion, we have (Eq. 5.9):

Id(z,u) =
vE U(z)

4π
+

3
4π

q(z) · u . (C.5)
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Inserting this expansion into Eq. (C.4) leads to

vE U(z = 0)
4π

∫
2π

u · ez dΩ +
3

4π

∫
2π

q(z = 0) · u (u · ez)dΩ = 0 . (C.6)

Defining cosθ = u · ez, we obtain

vE U(z = 0)
4π

∫
2π

cosθ dΩ +
3

4π
q(z = 0)

∫
2π

cos2 θdΩ = 0

which finally leads to
vE

2
U(z = 0) + q(z = 0) = 0 .

Making use of the expression of the energy current Eq. (C.3), we obtain the boundary condition
at the interface z = 0 in the presence of an incident collimated intensity:

U(z = 0) −
2
3

1
µa + µ′s

dU
dz

(z = 0) +
2µs g

vE(µa + µ′s)
Ib(z = 0) = 0 . (C.7)

In the absence of the collimated source term Ib(z = 0) = 0, the boundary condition simpifies
into

U(z = 0) −
2
3

1
µa + µ′s

dU
dz

(z = 0) = 0 . (C.8)

A pratical way to apply this boundary condition is to extrapolate U(z) linearly outside the
medium. We see that the energy density vanishes at a distance z0 = (2/3)(µa + µ′s)−1, known
as the extrapolation distance. When absorption can be neglected we simply have z0 = (2/3) `t.
Imposing U(z) = 0 for z = −z0 is equivalent to imposing (C.8).

Finally, let us note that we have dealt with the simple case of index matched media. In the
presence of a refractive index contrast, the boundary condition has to be modified. The extrap-
olation distance z0 takes a different value, that accounts for internal reflection of the diffuse
intensity at the interface. For a detailed study and the derivation of practical expressions, see
Refs. [23, 24, 12] and [1] (chap. 25).
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Appendix D

Diffuse transmission through a slab

In this appendix we calculate the power transmitted through a scattering layer with thickness
L � `t illuminated by a plane wave, in the framework of the diffusion approximation (see
Fig. D.1). We assume a non absorbing medium (µa = 0).

Z 

Z = 0 

I0 

Z = L 

Figure D.1: Diffuse transmission through a slab with thickness L. The interface z = 0 is
illuminated by a plane wave with intensity I0 (W.m−2).

The energy density U(z) in the medium satisfies (Eq. C.2 with µa = 0)

d2 U
dz2 = −

3µ2
s

vE
Ib(z) (D.1)

where µ′s = µs(1 − g) = 1/`t and Ib(z) = I0 exp(−µsz).

The general solution is the sum of the solution to d2 U/dz2 = 0 and a particular solution of
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Eq. (D.1). Using Up(z) = (−3I0/vE) exp(−µsz) as a particular solution, we have

U(z) = C1z + C2 −
3I0

vE
exp(−µsz) (D.2)

where C1 and C2 are two constants to be determined. To proceed, we use the boundary
conditions at the interfaces. At the interface z = 0, the boundary condition is (see Eq. C.7)

U(z = 0) −
2
3

1
µa + µ′s

dU
dz

(z = 0) +
2µs g

vE(µa + µ′s)
Ib(z = 0) = 0 . (D.3)

At the interface z = L, it is easy to see that using the procedure described in Appendix B we
obtain

U(z = L) +
2
3

1
µa + µ′s

dU
dz

(z = L) −
2µs g

vE(µa + µ′s)
Ib(z = L) = 0 . (D.4)

Inserting Eq. (D.2) into the above boundary conditions, the expressions of the constants C1 and
C2 are readily obtained. For z � `s, all terms proportionnal to exp(−µsz) can be neglected,
and the expression of the energy density inside the medium becomes

U(z) =
5I0

vE

[L + z0 − z
L + 2z0

]
(D.5)

where z0 = (2/3) `t.

The transmitted flux (unit W.m−2) is

φ = −D
dU
dz

(z = L) (D.6)

where D = (1/3)vE`t is the diffusion constant. We can define a transmission coefficient
T = φ/I0, which can be deduced from Eqs. (D.5) and (D.6):

T =
5
3

`t

L + 2z0
'

5
3
`t

L
(D.7)

since we have assumed L� `t. The scaling of the transmission coefficient with 1/L is a feature
of diffusive transport. For example, Ohm’s law gives an electrical conductance proportionnal
to 1/L with L the length of the conductor.
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