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Abstract—This paper investigates the use of sparse overcomplete
decompositions for audio coding. Audio signals are decomposed
over a redundant union of modified discrete cosine transform
(MDCT) bases having eight different scales. This approach pro-
duces a sparser decomposition than the traditional MDCT-based
orthogonal transform and allows better coding efficiency at low
bitrates. Contrary to state-of-the-art low bitrate coders, which
are based on pure parametric or hybrid representations, our
approach is able to provide transparency. Moreover, we use a
bitplane encoding approach, which provides a fine-grain scalable
coder that can seamlessly operate from very low bitrates up to
transparency. Objective evaluation, as well as listening tests,
show that the performance of our coder is significantly better
than a state-of-the-art transform coder at very low bitrates and
has similar performance at high bitrates. We provide a link to
test soundfiles and source code to allow better evaluation and
reproducibility of the results.

Index Terms—Audio coding, matching pursuit, scalable coding,
signal representations, sparse representations.

I. INTRODUCTION

L OSSY audio coding removes statistical redundancy and
perceptual irrelevancy in an audio signal to reduce the

overall bitrate. Statistical redundancy is reduced by using a
sparse signal representation such that the energy of the signal
is concentrated in a few coefficients or parameters. Perceptual
irrelevancy is exploited in audio coding by coarsely quantizing,
or even removing, components that are imperceptible to the
human auditory system. In this paper, we focus on the first part:
we propose a new signal representation method for lossy audio
coding.

When transparency or near-transparency is required,
state-of-the-art audio coders are mostly transform-based
and generally use the modified discrete cosine transform
(MDCT). One example of such a coder is MPEG-2/4 Ad-
vanced Audio Coding (AAC) [1], [2] which is able to encode
general audio at 64 kb/s per channel with near-transparent
quality [3], [4]. However, MDCT-based coders are known to
introduce severe artifacts at lower bitrates (see, e.g., [5]) even
if numerous approaches have been proposed to reduce them
(see, e.g., [6] for an efficient statistical quantization scheme).
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In this range, MDCT-based coders are nowadays outperformed
by methods that use alternate signal representation based on
parametric modeling. One of the most illustrative examples
of this is MPEG-4 SinuSoidal Coding (SSC) [7], [8] which is
based on a sine+transients+noise model of the signal. Formal
verification tests [9] show that SSC outperforms AAC at 24
kb/s per channel. Finally, so-called hybrid coders combine
transform and parametric modeling, such as MPEG-4 High
Efficiency AAC (HE-AAC) [10], [11] and 3GPP AMR-WB+
[12]. HE-AAC uses an MDCT to model the low half of the
spectrum and a parametric approach to model the high-fre-
quency components. AMR-WB+ combines several transform
and linear prediction techniques. These hybrid approaches also
perform better than AAC at low bitrates [12], [13]. However,
pure parametric or hybrid signal representation methods model
only a subspace of the audio signals and thus are not able to
provide transparent quality, even at high bitrates.

In this paper, we propose a new signal representation based
on a union of a number of MDCT bases (typically eight) with
different scales. As opposed to existing methods, this signal
representation method is able to obtain transparency at high
bitrates while giving better results than a transform-based ap-
proach at low bitrates, provided that the signal is sufficiently
sparse. This best-of-both-worlds approach between parametric
and transform coding results however in a very significant in-
crease in the computational cost for encoding, which hinders
on-the-fly encoding for communications but is acceptable for
non-real-time coding applications. Our technique of encoding
coefficients provides a fully embedded bitstream resulting in a
scalable coder ranging from very low bitrates to transparency.
This scalability property, although not the main motivation of
our work, could be useful for applications such as transmission
of audio over variable bandwidth networks or transcoding of
audio files.

Our approach is related to and different from existing
methods in several ways. First, it is related to transform coding
and could be seen as a generalization of the transform approach
since it is based on a simultaneous use of a union of MDCT
bases. This allows us to use efficient scalable encoding tech-
niques used in transform coding [14]–[16], while producing a
sparser decomposition than the transform approach, and allows
better coding efficiency at low bitrates. Second, our approach
is also related to parametric coding. We model the signal as
a sum of multiscale sinusoidal atoms which is closely related
to multiresolution sinusoidal modeling [17]–[19], a technique
used, e.g., in SSC. In parametric audio coding, the sinusoidal
model tries to match the sinusoidal content of the signal as
closely as possible, which is done using complex sinusoidal
atoms with a precise estimate of amplitude, frequency, and
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Fig. 1. Block diagram of the proposed coder.

phase and a postprocessing stage that builds sinusoidal tracks.
In our approach, we extract real sinusoidal atoms with only
an amplitude parameter, and so we do not have to transmit
any phase parameter. Contrary to the parametric approach, our
frequencies are sampled from a limited range (the fast Fourier
transform (FFT) size equals the analysis window length), which
permits transmission of frequency without requantizing. More-
over, since the sinusoidal decompositions used in parametric
audio coding extract, a limited number of sinusoids from the
signal and model the residual as noise (plus perhaps transient
modeling). Clearly, the sinusoidal decompositions only model
a subspace of the signal which limits their performance at high
bitrates. Our approach is more general as it models the signal
entirely with sinusoidal atoms, which is feasible here at a rea-
sonable coding cost because the set of time–frequency atoms
has a limited size, and consequently the cost to encode the index
of the selected atoms is not prohibitive. As a consequence, it
has the possibility of providing transparency at high bitrates.

The rest of the paper describes the different building blocks
of our coder, illustrated in Fig. 1. First, the signal is decomposed
over a union of MDCT bases with different scales. This is de-
scribed in Section II. Then, the resulting coefficients are grouped
and interleaved as described in Section III. Vectors of coeffi-
cients are obtained and successively coded using a bitplane en-
coding approach described in Section IV. It is important to note
that the proposed configuration clearly separates the signal anal-
ysis stage and the coding stage, this configuration is also referred
to as out-of-loop quantization or a posteriori quantization in the
literature. Finally, in Section V, we present objective and sub-
jective evaluations, and conclude (Section VI) with perspectives
of future work.

II. SIGNAL DECOMPOSITION

A. Signal Model

The audio signal is decomposed over a union of MDCT bases
with analysis window lengths defined as increasing powers of
two. In practice, for a signal sampled at 44.1 kHz, we found
that using eight MDCT bases with window length from 128
to 16 384 samples (i.e., from 2.9 to 370 ms) is a good tradeoff
between accuracy and size of the decomposition set. Small
windows are needed to model very sharp attacks while large
windows are useful for modeling long stationary components.
Empirical tests have shown that using more MDCT bases
with window lengths larger than 16 384 does not significantly
improve performance, but increases both the complexity and
the coding delay. While the MDCT [20], [21] is a time–fre-
quency orthogonal transform widely used in state-of-the-art
transform-based audio coders, no work has been found in the
audio coding literature related to the simultaneous use of a
union of MDCT bases. However, the union of MDCT bases
has already been applied with success in other contexts such as
audio denoising [22].

The signal is decomposed as a weighted sum of
functions plus a residual of negligible energy . One
may note here that corresponds to the length of the signal as
the analysis is performed on the whole signal; this is different
from the common approach in audio coding where the analysis
is performed frame-by-frame, being the frame length. The
model is given by

(1)

where are the weighting coefficients. The set of functions
is called the dictionary and is a union of

MDCT bases (called blocks)

(2)

with

(3)

where is the block index, is the frame index, is the fre-
quency index, and is the half of the analysis window length
of block

(4)

is the number of frames of block and the functions ,
called atoms are defined as

(5)

with

(6)
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Fig. 2. Analysis windows for different MDCT window sizes. Dashed
vertical lines indicate timeslots.

is a time offset introduced to align the windows of different
lengths (see Fig. 2)

(7)

The window defined over must
satisfy the symmetry and energy-preservation properties [21].
A window having these properties is the sine window which is
used in MPEG-1 Layer 3 [23] and MPEG-2/4 AAC [2], [24]

(8)

Another window is the Kaiser Bessel Derived window (KBD),
used in Dolby AC-2/3 [25] and MPEG-4 AAC [2].

B. Decomposition Algorithm

In the case of the orthogonal transform , forms a
basis of and the atoms are linearly independent. The
decomposition of over is then unique, and is easily obtained
by projecting the signal on the atoms

(9)

The dictionary is called overcomplete when : the di-
mension of is greater than the dimension of the signal, and
the decomposition of in is not unique anymore. We are
looking for a sparse solution, where the signal is represented
by a small number of atoms. Finding an optimally sparse solu-
tion is a NP-hard problem if the dictionary is unrestricted [26].
Instead, it is possible to find a suboptimal solution using algo-
rithms such as matching pursuit (MP) [27], basis pursuit [28],
or FOCUSS [29]. We have chosen MP for its simplicity, flexi-
bility, and rapidity. MP is an iterative descent algorithm which
selects the optimal atom at each iteration (see Algorithm 1).

Fig. 3. Mean SNR for five signals given by MP with a single MDCT (window
length 2048 samples) and a union of eight MDCT bases (window length from
128 to 16 384 samples).

Algorithm 1 Standard MP

input:
output:

,

repeat

until target signal-to-noise ratio (SNR) has been reached.

Our experience shows that MP produces a much sparser de-
composition when using an overcomplete dictionary
instead of an orthogonal dictionary . Fig. 3 shows the
mean SNR of five signals (with a variety of genres) given by MP
with a single MDCT (window length 2048 samples) and a union
of eight MDCT bases (window length from 128 to 16 384 sam-
ples) as a function of the number of the selected atoms. In the
overcomplete case, long stationary parts are efficiently modeled
by a small number of large atoms while the attacks are modeled
by only a few small scale atoms. This then requires fewer atoms
than the single basis case to reach the same SNR, and thus fewer
atoms to encode. However, the cost of encoding the index of the
selected atoms is greater in the overcomplete case due to the size
of the dictionary, but efficient encoding algorithms described in
the next sections are able to reduce this cost and still provide
better overall coding efficiency than in the transform case at low
bitrates.

Standard MP gives good results with most signals; however, it
inevitably introduces pre-echo when decomposing signals con-
taining strong attacks. This problem is illustrated in Fig. 4. An
extract of a glockenspiel signal is decomposed with MP over
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Fig. 4. From top to bottom: the original signal; the residual after ten iterations;
the selected atom at iteration 11; the logarithm of the absolute value of the cross-
correlation between the un-windowed atom and the original signal on subframes
(dotted lines); the residual after 11 iterations.

a union of MDCT bases (and samples).
The second subplot shows the residual at iteration 10. The atom
which is best correlated with this residual is in the third sub-
plot. The logarithm of the absolute value of the correlation of the
un-windowed function with the original signal on subframes of
size 256 is in the fourth subplot. This shows that the beginning of
the atom is not correlated with the signal. This results in creating
energy just before the transient, which appears in the residual
at iteration 11 in the fifth subplot. This energy is removed in
further iterations with atoms of low energy. When coding such
a decomposition at low bitrate, only the greatest energy atoms
are kept which then introduces a pre-echo artifact. Gribonval
pointed out this problem in [30] with MP and a Gabor dictio-
nary. He proposed a modified MP algorithm called High-Res-
olution Matching Pursuit (HRMP) based on the work of Jaggi
et al. [31]. However, this algorithm was designed for a complex
Gabor dictionary and is not adapted to a union of real MDCT
bases. Moreover, HRMP significantly increases the computa-
tional cost. Alternatively, we propose a simple modification of
the MP algorithm that reduces pre-echo artifacts with a small
additional computational cost. At each iteration, the function in

most correlated with the signal is chosen; then the cross-cor-
relation of the un-windowed function with the original signal is
computed in subframes of size (as in Fig. 4); if the dynamic
of the cross-correlations (computed as the ratio of the cross-cor-
relation extrema) is greater than a predefined threshold then the
function is not selected and removed from the dictionary, other-
wise the function is kept and subtracted from the residual (see
Algorithm 2). The threshold level was chosen empirically. On
the one hand, a high value only removes a few large atoms and
gives almost the same result as the standard MP. On the other
hand, a low value removes many large atoms but reduces the
sparseness of the representation. The value 100 appears to be
a satisfactory tradeoff between these two situations. The effec-
tiveness of this pre-echo control is illustrated in Fig. 5 for an
extract of a glockenspiel signal.

Fig. 5. From top to bottom: Spectrogram of the original signal; spectrogram of
the approximated signal with the standard MP and an SNR of 20 dB; spectro-
gram of the approximated signal with the modified MP and an SNR of 20 dB.

Algorithm 2 MP with pre-echo control

input: ;

output

is the shortest window size

repeat
loop

window size

th W-length subframe of

th W-length subframe of un-windowed.

if then

else
exit loop

end if
end loop

until target SNR has been reached.

C. Implementation

The decomposition algorithm has been implemented in the
Matching Pursuit ToolKit [32], a GPL/GNU library developed
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Fig. 6. Computation time to decompose the glockenspiel signal (10-s length)
on a 3.0-GHz Pentium 4 computer.

by Krstulovic et al. and written in C++. This implementation is
to date the fastest available implementation of general MP.

The pre-echo control modification adds a small complexity
overhead. Our experiments show that it is around 5% slower
than the standard MP. Fig. 6 shows the computation time needed
to decompose a 10-s length glockenspiel signal with the eight-
scale MDCT dictionary.

III. GROUPING AND INTERLEAVING

The decomposition algorithm produces a set of coefficients
such that

(10)

with a residual of negligible energy.
Contrary to the transform coding case where the analysis is

done on a frame-by-frame basis, the decomposition is here per-
formed on the whole signal. As the coefficients are encoded
using similar techniques as used in transform coding, it is nec-
essary to group the coefficients in time segments similar to the
frames of transform coding. These segments are called here
timeslots (see Fig. 2).

In each timeslot, the coefficients are interleaved to produce a
vector of coefficients, which is then encoded using the bitplane
algorithm described in the next section. The interleaving process
puts side by side the coefficients which are close in the time–fre-
quency plane. Consequently, this will most probably cluster the
coefficients of high amplitude and leave long series of zeros co-
efficients. It has been observed that if a coefficient has a high
amplitude, then there is a high probability that neighboring co-
efficients in the time–frequency plane have a high amplitude too.
This vector of interleaved coefficients with clusters of high-am-
plitude coefficients and long series of zeros, is then efficiently
encoded using run length-based bitplane algorithms. This sec-
tion describes how the coefficients are grouped in timeslots and
then interleaved to produce a vector of coefficients per timeslot.

A. Segmentation in Timeslots

The coefficients are grouped in subsets called timeslots,
each of which includes coefficients such that the cen-
ters of the corresponding atoms are in the time support of the
timeslot

(11)

where is the timeslot length and is the timeslot offset
(position of the first timeslot). The values are chosen such that
the timeslots are aligned with the maximum window length
block (see Fig. 2)

(12)

Using these values, the first frames of
block are discarded and there are frames of block in
each timeslot. Timeslots are then simply defined as

(13)

where is the function that rounds to the nearest in-
teger less than or equal to . Since the first and last frames of
each block are discarded in this scheme, it is necessary to pad
the signal with zeros at both sides before the decomposition
to avoid any problem at the edges.

To simplify notations in the following, we introduce a new
frame index such that the frame index starts at 0 in each
timeslot. It is defined as

(14)

where is the remainder of the Euclidean division of
by .

B. Coefficient Interleaving

To be encoded efficiently with the runlength-based bitplane
encoder described in the next section, the coefficients are in-
terleaved so that the coefficients that are close in the time–fre-
quency plane are put side by side. The interleaving process pro-
duces a vector of coefficients .

Fig. 7 shows the interleaving process for a simple example
where and . Coefficients are indexed using the
notation where , , and . In 1),
each row corresponds to one block and in each block, coeffi-
cients are grouped in frames. In 2), the frames of smallest scale
(block 0) are interleaved two by two with the immediate upper
frame in block 1. This first step produces two new frames of
interleaved coefficients. In 3), these two frames are interleaved
with the frame of largest scale (block 2) in such a way that the
resulting vector has alternatively a coefficient of each block: one
of block 2, followed by one of block 1, followed by one of block
0, followed by one of block 2, and so on.

The mapping process between the coefficients of a timeslot
and the corresponding vector values may also be for-

mulated as follows. First we define a recursive function that
performs a permutation of the frames

(15)
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Fig. 7. Interleaving process for , . 1) The coefficients of the three blocks are given frame by frame and block by block ( is the coefficient of
index , , and ). 2) The frames of block 0 are interleaved two by two with the immediate upper frame of block 1. 3) The resulting two frames
of interleaved coefficients are interleaved with the unique frame of block 2.

and for

if is even

if is odd.
(16)

Then, values are mapped according to

(17)

with

(18)

IV. BITPLANE ENCODING

The vector of interleaved coefficients of each timeslot is
encoded using bitplane encoding approaches that are similar
to those used in transform coding. Though the vector length
is much greater ( times) than it would be in the transform
coding case, many coefficients are zero and energy is concen-
trated in fewer coefficients than in the transform coding case.
Moreover, the interleaving process often clusters coefficients of
high amplitudes and leaves long series of zeros as explained in
the previous section. Consequently, runlength-based encoding
techniques are very efficient in this case as the long series of
zeros are coded using very few bits. The runlength based bit-
plane encoder we use is based on an approach originally pro-
posed in [33]. We first describe the simple bitplane encoder we
used in a previous work [34]. This algorithm is the same as the
one used in some wavelet-based image coders [35], [36] and
also in a transform-based audio coder [16]. Then, we present a
modified version of the bitplane encoder that shapes the quanti-
zation noise according to a psychoacoustic model.

Fig. 8. One iteration of the simple bitplane encoder. The two encoding passes
are shown. The bits in gray correspond to the transmitted bits.

A. Simple Bitplane Encoder

The coefficients are first normalized by the amplitude of the
coefficient with maximum amplitude . The
value is quantized and transmitted. The coefficients are then
represented in sign-amplitude form (as shown in Fig. 8, only the
five most significant bits are shown). The th most significant
bit of the coefficient is given by

. The vector of bits of same significance (or level)
is the th bitplane . A coefficient is said to be
significant at level if . The significance of each
coefficient is stored in a vector ( if the coefficient is
significant, if not).
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The basic principle of bitplane encoding is to send suc-
cessively each bitplane starting from the most significant
bitplane. This is generally done using a scheme in two passes:
the significance pass and the refinement pass. The significant
pass transmits the subset of the bitplane corresponding to
the th most significant bits of the coefficients that are not
yet significant . The significance pass
also transmits the sign of the new significant coefficients. The
refinement pass transmits the subset of the bitplane corre-
sponding to the th most significant bits of already significant
coefficients . Many existing bitplane
encoding algorithms differ essentially in the way they perform
the significance pass. In our case, we use an approach based
on adaptive Golomb codes. Here, the significance pass does
not transmit directly the bits in but instead transmits the
number of zeros between ones using adaptive Golomb codes.
The parameter of the Golomb coder is initialized to a fixed
value before encoding each bitplane. Then, the bits are
encoded using the following simple algorithm: if a sequence of

zeros is found in , a bit 0 is transmitted and is updated
; if not, a number of zeros inferior to followed

by a one remains, this number of zeros is transmitted on
bits preceded by the bit 1 and is updated . Each
one found in corresponds to a new significant coefficient;
consequently, the sign of this coefficient is also transmitted.
This process is repeated until the end of is reached. The
complete algorithm of the simple bitplane encoder is detailed
in Algorithm 3.

Algorithm 3 Simple bitplane encoder

input: the coefficients vector

output: the bitstream

quantize and code max amplitude

for all

repeat

repeat

if sequence of zeros in then
emit the bit 0

else

emit the bit 1

emit bits: number of zeros followed by a one

emit 1 bit: sign of corresponding coefficient

end if
move to the next bits in

until the end of

emit the sequence of bits in

for all such that and

until bit budget spent or .

B. Psychoacoustic Bitplane Encoder

The simple bitplane encoder sends the coefficients in de-
creasing order of amplitude. However, the coefficients with the
highest amplitude are not necessarily the most perceptually
relevant coefficients. Indeed, some components are masked and
some others are below the absolute threshold of hearing. It is
therefore preferable to send first the most perceptually relevant
coefficients using a psychoacoustic model. However, existing
psychoacoustic approaches as used in transform coding cannot
be easily applied to union of MDCT bases representations. This
is due to two main reasons. The first reason is that the psy-
choacoustic models used in transform coding are designed for
a fixed resolution representation and are not adapted to a mul-
tiresolution representation where time-localized components
(short window atoms) and frequency-localized components
(long window atoms) are superimposed. We thus propose a
suboptimal approach where a masking threshold is computed
for each MDCT as if they were independent MDCTs. In each
frame of each block, a spectral analysis is performed and
the Johnston model [37] is used to compute a mask for the
corresponding frame of coefficients. The second reason is
that there are more components in the overcomplete case and
thus more masking values, it is then more costly to send the
psychoacoustic masking threshold to the decoder. Instead, we
propose a suboptimal approach inspired from [15] where the
mask is computed on the partially coded coefficients. Conse-
quently, there is no need to transmit the mask to the decoder,
as it is computed the same way by the decoder on the partially
decoded coefficients.

Here, we propose a modification of the simple bitplane en-
coder which shapes the quantization noise according to the psy-
choacoustic model. The complete algorithm is detailed in Algo-
rithm 4. At each iteration of the algorithm, only a subset of the
current bitplane is sent. A masking threshold is used to select
the bits which are transmitted. First, the masking threshold is
initialized to the absolute threshold of hearing (ATH). Second,
the mask is updated every time bits have been added to the
bitstream. To update the mask, a synthesized signal is first recon-
structed from the partially coded coefficients. Then, a masking
threshold is computed in each frame of each block as mentioned
above. The psychoacoustic model gives a masking threshold
value for each coefficient, and finally, a simple rule decides
which bits are transmitted: the difference gap between the
masking threshold (converted to the bitplane scale) and the cur-
rent bitplane level is computed: .
Then, we select the bits whose gaps are greater than the mean
of the gap: such that . Fig. 9 shows one itera-
tion of the algorithm. Contrary to the simple bitplane encoder,
the current level is different for each coefficient because only a
subset of the bitplane is sent at each iteration. The gap is com-
puted for each coefficient and the coefficients whose gap value
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Fig. 9. One iteration of the psychoacoustic bitplane encoder. Plain rectangles
correspond to the level of the selected coefficients. Dotted rectangles correspond
to the level of the nonselected coefficients. The two encoding passes are shown.
The bits in gray correspond to the transmitted bits.

is above the mean of the gap are selected, here the coefficients
0,1,2,8,9,10,11. Finally, the selected bits are encoded using the
same two-pass scheme as in the simple bitplane encoder.

Algorithm 4 Psychoacoustic bitplane encoder

input: the coefficients vector

output: the bitstream

quantize and code max amplitude

and for all

initialized to the ATH

repeat
if new bits have been added to the bitstream then

update mask

end if

and

and

repeat

if sequence of zeros in then
emit the bit 0

else
emit the bit 1

emit bits: number of zeros followed by a one

emit 1 bit: sign of corresponding coefficient

TABLE I
TESTING MATERIAL

end if
move to the next bits in

until the end of

emit the sequence of bits in

for all such that and

for all such that

until bit budget spent or .

V. EVALUATION

A. Test Material

Five signals were used, from the dataset of [13] (see Table I).
This subset was chosen to include critical and rather varied ma-
terial (from mono-instrumental to complex polyphonic signals).
The length of each signal is approximately 10 s. We resampled
the signals from 48 to 44.1 kHz and kept only the left channel.

B. Coder Configuration

To evaluate the coder, the following parameter values have
been chosen.

1) Decomposition: The coder tested is based on a union of
bases, with the half of the shortest window length being

. Two analysis windows have been tested: the sine
window and the KBD window introduced in Section II. Since
there were no noticeable differences in the results using one or
the other, we used the sine window (8). The signal is padded
with one second of zeros on both sides. The parameter in
the modified MP is set to 100 and the target SNR is set to 80 dB.
We found it necessary to use such a high value to obtain rele-
vant objective measurements at high bitrates (above 128 kb/s).
However, in practice, it is sufficient to use a target SNR between
30 and 50 dB for low to medium bitrates.

2) Coding: The maximum amplitude value is quantized and
coded using 16 bits. The parameter is set to 2. The bit
budget for each timeslot is constant and is set according to the
target bitrate. The maximum level is set to 30. The number
of bits necessary to update the mask is set to 1 kb. The critical
bands for the Johnston model have a length of approximately
0.3 barks. The ATH formula is the one provided in [38], and
the spreading function formula is the one provided in MPEG-4
specifications [2].

C. Objective Evaluation

We use PEMO-Q software [39] as an objective measure to
evaluate our coder. This software provides two values, the per-
ceptual similarity measure (PSM) which is restricted to the in-
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Fig. 10. Mean of PSM and ODG values for five signals and two coders based
on a single MDCT and a union of eight MDCTs.

Fig. 11. Mean of PSM and ODG values for five signals and three coders:
iTunes’s AAC, our coder without psychoacoustic model, our coder with
psychoacoustic model.

terval (1 indicates transparency) and the objective differ-
ence grade (ODG) which is on the same scale as the subjective
difference grade (0 indicates transparency). It is important to
note that PEMO-Q was optimized and validated with high-bi-
trate audio coders. Consequently, the results at low bitrates may
be less relevant.

In our first experiment, our coder is compared to a similar
transform-based coder. This makes it possible to assess the use-
fulness of using an overcomplete basis, all other things (quan-
tization, coding) being equal. The reference coder uses only

MDCT basis with samples and exactly
the same coding algorithm. This experiment is an extension of
prior work where no psychoacoustic model was used [34]. Note
that the results of the transform coder may have been improved
by using a time-varying MDCT with a switching block size at
transients. The mean of the PSM and ODG values over the five

signals are in Fig. 10. The union of MDCT approach gives sig-
nificantly better results at low bitrates while performing simi-
larly at high bitrates.

In our second experiment, two versions of our coder are com-
pared with a reference state-of-the-art coder. The two versions
of our coder are the coder without the psychoacoustic model
which is then the same as in [34] and the coder with the psychoa-
coustic model. The reference coder is the iTunes 7 AAC encoder
[40] as it is freely available and a fully AAC compatible en-
coder. The mean of the PSM and ODG over the five signals are
in Fig. 11. The results show that the psychoacoustic model adds
a significant gain to the results of the previous coder, and gives
a coder which is competitive with the iTunes AAC encoder.

D. Subjective Evaluation

Two versions of our coder are subjectively evaluated with a
MUSHRA listening test [41], with scores that range from 0 (ex-
tremely poor quality) to 100 (transparent). Ideally, an ABC test
would also be needed to test transparency at high bitrates. How-
ever, performing a listening test is very time consuming, and we
have preferred to test the performance of our coder at medium
and low bitrates only. A total of 20 listeners evaluated eight ver-
sions of the five test signals of Table I: a hidden reference, a
3.5-kHz low-pass anchor, two signals coded with iTunes AAC at
24 and 48 kb/s, two signals coded with our coder and the simple
bitplane encoder (noted ) at 24 and 48 kb/s, and two
signals coded with our coder and the psychoacoustic bitplane
encoder (noted ) at 24 and 48 kb/s. These 40 sound
files and the source code of the codec are available online.1 The
participants were post-screened according to the score they at-
tributed to the reference: the data for listeners who gave a score
under 90 (which corresponds to the lowest mark for the category
excellent quality) was discarded. A total of 12 listeners were
kept, mostly graduate students working in the field of acoustics
or audio processing. Fig. 12 presents the scores for each five
signals, with the overall scores shown at the bottom.

The first goal of this listening test is to show the benefit of
the psychoacoustic bitplane encoder ( ) compared to the
simple bitplane encoder ( ). The results are very signal
dependent. Simple signals (bagp, harp, and gloc) are very sparse
in the time–frequency domain; in this case there is no gain when
using the psychoacoustic bitplane encoder. For harp and gloc
signals, the psychoacoustic approach even slightly degrades the
performance, though scores still remain high. For more com-
plex, polyphonic signals, the psychoacoustic approach signifi-
cantly increases the scores. This is due to the presence of a very
large number of time–frequency components that mask each
other.

The second goal of this listening test was to compare our pro-
posed coders with a reference pure transform coder, the iTunes
AAC coder. These results are also very signal dependent: at
low bitrates, our approach gives much better results for mono-
phonic signals (bagp, harp, and gloc) and slightly worse results
for polyphonic signals (orch and popm). At high bitrates, our ap-
proach with the psychoacoustic model gives the same or slightly

1The sound files used in the listening tests and the GNU/GPL source code of
the codec needed to reproduce the results are available online at the following
address: http://www.emmanuel-ravelli.com/taslp08
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Fig. 12. MUSHRA listening test results. From left to right: 3.5-kHz low-pass anchor, iTunes AAC at 24 kb/s, our coder with the simple bitplane encoder (Codec
A) at 24 kb/s, our coder with the psychoacoustic bitplane encoder (Codec B) at 24 kb/s, iTunes AAC at 48 kb/s, our coder with the simple bitplane encoder (Codec
A) at 48 kb/s, our coder with the psychoacoustic bitplane encoder (Codec B) at 48 kb/s. From top to bottom: Bagpipe, Glockenspiel, Harpsichord, Orchestra, Pop
Music, All signals.

worse results, except for the case of polyphonic signals and the
simple bitplane encoder, where the poor results show that a psy-
choacoustic approach is necessary.

Overall, these results show that our approach is competitive
with a state-of-the-art pure transform coder, especially since we
did not spend much effort in the optimization of encoding pa-
rameters as opposed to the highly-optimized AAC coders. It is
also interesting to note here that, as opposed to the reference
coder, our approach provides fine-grain scalability, a property
which is generally provided at a cost in terms of performance.
An example of a fine-grain scalable coder is MPEG-4 BSAC.
Formal listening tests [42] show that at low bitrates BSAC re-
quires a 12.5% bitrate overhead compared to AAC for the same
quality.

VI. CONCLUSION

This paper proposes a new signal representation for audio
coding. Contrary to existing methods, this approach provides
transparency at high bitrates and competitive results at low
bitrates. Listening tests that compare our proposed coder with a
state-of-the-art transform-based coder show that our approach
provides much better quality for monophonic signals and
similar or only slightly worse results for polyphonic signals.
However, it should be emphasized that the main goal of this

paper is to show that the concept of sparse overcomplete repre-
sentations over a union of MDCT bases is a viable approach for
audio coding. Our coder has also been designed with the extra
constraint of fine-grain scalability, although this is by no means
a requirement for our concept.

However, these results are obtained at a cost in terms of
computation time. Indeed, the decomposition algorithm is
much slower than what is needed for a transform (which ap-
proximately corresponds to the first iteration of the Matching
Pursuit algorithm). Moreover, our approach uses much longer
analysis window lengths (up to 16 384 samples at 44.1 kHz)
than those used in an AAC coder (2048 samples) which results
in much greater delay time. The delay of our coder is equal
to the maximum window length, i.e., 371.5 ms. These two
issues prevent the use of this approach in applications that
require real-time/low-delay encoding. The computation times
are high but not excessive (typically between 5 and 200 times
the duration of the file, depending on the signal and the target
bitrate), and are acceptable for offline sound databases or
personal music collections.

While the proposed coder is competitive with state-of-the-art
transform coders, there is still much room for improvement. One
possibility is to use more efficient decomposition algorithms
such as orthogonal Matching Pursuit [26] or Basis Pursuit [28].
We can also improve the coding part: a better psychoacoustic
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model, a better integration of the psychoacoustic model into the
bitplane encoder and a fixed bitrate coding scheme instead of
bitplane encoding. We are also currently working on the appli-
cation of such decompositions to audio indexing tasks. We be-
lieve that these representations can be very useful for transform
domain applications such as beat tracking, tonality estimation,
and audio classification.
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