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Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown
considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image
processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature.
Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition
and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final
tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of
experimental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these
approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such
problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already
possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using
existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast

trigger decisions.

1. Parallel processing

The basic tenet of parallel processing, that in-
dependent tasks can be performed at the same
time, is of course not a new idea, but it is only
recently, with the ever-decreasing cost of com-
puter hardware, that one has dared to think of
actually putting two or more computers to work
on the same problem. Parallel processing has made
an impact on high energy physics in a variety of
applications.

Three parameters can be used to specify the
architecture of any parallel processing system: 1)
the number of processors, 2) the power of each
processor, and 3) the degree of connectivity be-
tween processors. In what follows we shall see that
difficult problems do not necessarily require
powerful processors. Depending upon the problem
to be solved, a large array of simple but tightly
coupled processors may be more appropriate than
a small array of powerful, loosely coupled
processors. Processing power of the individual
processors can be traded off against more

processors, or higher connectivity, or both. The
overall power of a particular architecture is speci-
fied not by any one of the parameters, but, in
some sense, by the product of the three.

To date, in high energy physics, most applica-
tions have involved a modest number, a few tens,
or at most hundreds, of powerful processors which
are loosely coupled, i.e., have low connectivity.
Examples of this approach are the 168/E and
3081 /E emulator ‘farms’, and the Fermilab ACP
system (see ref. [1] for a review of these and other
related systems). In these applications, individual
data events are distributed to the processors, each
of which completely analyzes an entire event,
passes on the results, indicates its readiness to
accept another event, and so on. Because the
processors independently operate on separate
events, the amount of communication required
between processors is minimal. :

In another type of application, a group of
processors work on different parts of the same
event: one on the tracking, one on the calorimetry,
and one on the Cherenkov analysis, for instance.
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In this case the processors can be somewhat less
sophisticated (smaller individual memory require-
ment, e.g.) but the degree of connectivity is neces-
sarily larger since the results must be reassembled
at the end of the calculations to build a complete
event or to make a trigger decision (the NIKHEF
FAMP system is an example of the latter [2]).
Recently, powerful, commercially produced
vector computers have begun to become available.
These machines are an example of large arrays of
very primitive processors {(each can only add, sub-
tract, multiply, divide, and perhaps extract square
roots) which are very highly coupled. Consider for
example forming the dot product of two 100-com-
ponent vectors. In a vector computer, each of the
100 multiplications of the individual components
can be done simultaneously (assuming the maxi-
mum machine vector length is at least 100), but
afterwards the results must all be brought together
again to be summed into the dot product. By
recognizing those areas of high energy physics
data analysis programs which contain large num-
bers of manipulations of independent guantities,
and by recoding these sections for application on
a vector machine, significant gains in processing
speed can be had. Examples are the Fermilab
E711 and SLAC Mark III vectorized track finding
programs in which the drift chamber hit pattern is
compared to a bank of stored templates of all
possible tracks, [3,4] and the CUSB calorimeter
clustering algorithm, which uses stored neighbor
information to group pulse heights together [5].

2. High connectivity parallel processing

Two of the most recent developments in paral-
lel processing, and ones to which as yet little
attention has been given by experimental high
energy physicists, are the use of cellular automata
and neural networks, which are in fact closely
related to each other. Both consist of arrays of
very simple individual processing cells, with multi-
ple inputs and outputs, which are connected to
each other according to a permanent, fixed pat-
tern which depends on the problem to be solved.
Thus, these arrays are a bit like a vector machine
in which the pattern of connections between

processors for a given problem has been uniquely
fixed, being established either in the hardware, or
through an imposed addressing scheme.

Associated with each cell is a variable describ-
ing its current output value; it is the set of all
output values which ultimately will encode the
‘answer’ to the problem being solved. Each cell’s
output value is uniguely determined from the en-
semble of its inputs, i.e., the ensemble of informa-
tion received from the cells to which it is con-
nected, according to a simple rule which is nor-
mally the same for all cells. Each cell’s new output
value is then transmitted to the input of each cell
to which it is connected, and the process con-
tinues. The system is allowed to evolve in this way
until a steady state is reached, i.e., until the pat-
tern of output values stops changing. These steady
states are called attractors.

The ‘Game of Life’ of Conway [6] is a popular
computer game using cellular automata in which
the cells are represented by squares in a grid on a
display screen. The player assigns random output
values to the cells, which are represented by the
cell being dark (0), or bright (1), and defines a
transition rule. Each cell, responding to its neigh-
bors, changes its state according to the transition
rule, making interesting patterns of bright and
dark dots as the system evolves toward an attrac-
tor state (fig. 1).

High-connectivity methods are most effective
on so-called ‘intractable’ problems in which, due
to combinatorics, or inherently large numbers of
variables, solutions by more traditional means
would require collossal amounts of computer time.
Cellular automata are currently being used to
study, for example, detailed solutions to turbu-
lence problems in fluid mechanics, and the growth
of snowflakes [7], two areas long considered too
complex to be solved in detail by computational
methods. Recently, they have even been applied to
simulations of the distribution of galaxies in the
universe [8].

One of the more famous successes of neural
networks is in their application to the Traveling
Salesman Problem, or TSP [9]. In this problem a
list of cities and their coordinates is presented,
and the computer has to pick the shortest trip that
visits each city exactly once. The number of possi-
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Fig. 1. Four stages in the evolution of a Game of Life. The initial state is assigned at random. The transition rule states that, in each

succeeding step, a cell will take on the value of the majority of its four neighbors. If their is no majority, no change takes place. The

state of the system is shown after 17, 82, and 366 generations, after which no further change occurs. Four types of stable or

“attractor” configurations, a), b), ¢) and d) are seen in the final frame: these are invariant under the application of the transition rule

( d) is actually a 2-state, i.e, invariant under two consecutive applications of the rule). These are simple examples of the spontaneous
creation of large scale structure by the application of simple local rules.

bilities grows as N! so that for more than about
12 cities the problem becomes intractable on a
traditional, even vector, computer. A neural net-
work of N? neurons, on the other hand, can
provide near-optimal solutions in a few network
time constants. Time constants of currently availa-
ble networks are of the order of 1 microsecond
[10]. (These prototype networks are still rather
small, but the time constant should not be a
function of network size.) Another current appli-
cation of neural networks is the NETtalk project
developed at Johns Hopkins University {11]. This
is a simulated neural network with some 10000
interconnections which can be ‘taught’ to translate
printed text into spoken words by using an itera-
tive ‘learning’ procedure.

Neural networks and cellular automata thus are
at the opposite end of the parallel processing
spectrum from, say, emulator farms: the former
consist of large numbers of simple processors that
are heavily interconnected, while the latter consist

of moderate numbers of powerful processors that
are loosely interconnected.

The following section defines more precisely
the properties of the two types of networks; subse-
quently, most of the discussion will deal with
neural networks, with a brief return to cellular
automata in the section on calorimeter clustering.
Associative memory, an important property of
neural networks, is discussed in section 11.

3. Characteristics of cellular automata and neural
networks

As mentioned earlier, cellular automata and
neural networks are closely related, but four quali-
ties distinguish a cellular automata system (see ref.
[7] for a more detailed treatment). First, the out-
put values of the cells are discrete (usually 0 and
1, although multistate automata are also being
studied). Second, each automaton is connected
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only to a limited number of nearby cells, often
just its nearest neighbors. Third, a cellular au-
tomata system 18 clocked; with each clock tick,
each automaton examines its inputs, decides on
the basis of a ‘transition rule’ whether or not to
change its state, and sends its new output value to
the inputs of its neighbors. On the next tick these
new inputs are examined, and so on. Fourth, the
transition rule used, which can have an arbitrary
functional form, depends upon the problem to be
solved.

A neural network differs on these four points.
First, the output values of the neurons are con-
tinuous variables, though usually bounded be-
tween 0 and 1. Second, a given neuron can in
principle be connected to any or all of the other
neurons in the network, including those which are
relatively distant. Third, neural networks are
asynchronous, not clocked: the outputs vary con-
stantly according to an instantaneously evaluated
function of the inputs. In addition, the inputs are
integrative over time, with an integration time
constant to be specified. Finally, the function
which determines the output from the mputs has a
specific form, and is the same for any problem:
the output is a sigmoid function (see fig. 2) of a
linear combination of the inputs. Only the coeffi-
cients in this linear combination (and of course,
the pattern of connectivity) must be specified for a
particular problem.

The use of the sigmoid response function is a
relatively new idea [9], motivated by studies of the
response functions of real neurons in the cortex,
which have a similar form. It was not until the
addition of this feature that the calculational
properties of neural networks were realized; that
is, neurons with this type of response function
seem to exhibit computational properties not
shared by neurons with simple step-function re-
sponse [9]. The exact shape of the sigmoid curve is
not important, but what appear to be the essential
elements are the existence of a central, nearly
linear region, and plateaux as the input ap-
proaches large positive or negative values. The
reasons for the importance of these features will
be discussed further in section 5. It is because of
the biological origins of the response function, and
of course the high degree of interconnectivity, that
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Fig. 2. Sigmoid response function.

the mathematical networks we study here have
come to be called ‘neural’.

4. Implementation of high-connectivity systems

True hard-wired networks in which the signal
processing is done with analog circuitry are just
beginning to appear. Examples are a 256-neuron,
fully connected, silicon-based device developed at
AT&T Bell Labs [10] and an experimental 10000
cell optical device, developed at Caltech, that uses
a hologram to map the output of each cell onto its
neighbors [12]. It should be possible, however,
with conventional optical and electron-beam lith-
ography, to build networks with a connection
density of 0.5 X 10° per cm? [10]. Such densities
are possible because the connections between neu-
rons, by far the element required in the greatest
numbers, can be implemented by simple resistors,
which take up considerably less area on a silicon
chip than a transistor. The basic circuit which
needs to be realized is shown schematically in fig.
3. This figure shows an array of neurons, repre-
sented by simple amplifiers, which have normal
and inverted outputs in order to supply either
reinforcing or inhibitory input to other neurons.
All of the outputs cross all of the inputs in a grid,
and resistances, with values proportional to the
desired coefficients, are attached at the interstices
in order to form the required connection network.
The inputs to a given neuron are wire-summed
directly on its input line. The network shown is a
fully connected one, with the signs of the connec-
tions chosen at random.

As large scale hard-wired networks do not yet
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Fig. 3. Schematic of a fully connected network. Neurons,

represented as amplifiers, have normal and inverted outputs,

for making reinforcing and inhibitive connections, respectively.

The network shown is fully connected, with signs of connec-

tions assigned at random. Note the absence of connections
along the diagonal.

exist, it is necessary to use modelling to study
their properties. Because of the structure of a
network, these model calculations are almost tot-
ally vectorizable, and thus can fully exploit the
speed of vector machines. Some of the fluid flow
simulations have also been done using the
Connection Machine™ [13]. This is a commer-
cially produced machine consisting of an array of
65536 individual processors each of which can
explicitly address any of the other processors in
the array, through the intermediary of a Boolean
12-cube routing scheme. This routing scheme is
necessarily slower than a true hard-wired connec-
tion network (which would require billions of
wires), but is nonetheless very efficient since each
word of information sent is never more than 12
steps away from its destination. Because of this
architecture, the Connection Machine is ideal for
modelling neural and cellular automata networks.
It was designed to be able to simulate any size
array of processors (even arrays bigger than 65536
are handled transparently), with the number of

processors and their interconnections specified by
the user.

It turns out, perhaps somewhat surprisingly,
that for extremely complicated problems, even rhe
model of a neural network is fast, faster than a
more conventional approach. That this is so will
be demonstrated in the discussion, in section 6, of
the following example.

5. Example. The Travelling Salesman Problem
(TSP)

We follow here, loosely, the treatment of Hop-
field and Tank [9]. Consider, for a trip of N cities,
an N by N array of neurons. The horizontal
position of a neuron in the array determines the
city number, and the vertical position determines
the order in which the city is visited (see fig. 4).
Thus a valid trip is represented by a different
neutron being on in each row. Now consider the
connections between neurons. Let every neuron be
connected to each neuron in the rows immediately
below and above with a coefficient proportional to
A —d,;, where d,, is the distance between cities i
and j, and A4 is a positive constant. That is, if
neuron / has an output value of f,, it will present
a signal proportional to (A4 — 4, ;/)f; at the input of
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Fig. 4. Travelling salesman problem (TSP). Solid line =

reinforcing coefficients 4 — d,,, broken line = inhibitive coeffi-

cients— B. Connections for neuron (4, 5), represented by O,
are shown, other ‘on’ neurons are represented by X.
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neuron j. The reverse relation is also true since
the matrix of coefficients is normally taken to be
symmetric. Thus, if d,; is large, neurons / and
will tend to inhibit each other, with the effect that
patterns of neurons with small 4,; values between
neighboring rows are favored. Inhibitive connec-
tions, of value — B, say are also imposed, between
each neuron and those in its own row and column.
This has the result that if one neuron is on in a
particular row and column, it will tend to turn off
other neurons in the same row and column, thus
ensuring that valid tours exclusively will be con-
sidered.

Random starting values are assigned to the
neuron outputs, and the system is allowed to
evolve. Throughout the evolution of the network,
each neuron will have an output value between 0
and 1, which is equivalent to saying that the state
of the system is described by a point in an N-di-
mensional space, with one dimension for each
neuron. In the final solution, each neuron must
have a value of either 0 or 1, i.e., the solution lies
at a corner of an N-dimensional hypercube. Dur-
ing the calculation, however, the state of the sys-
tem moves around within the volume of the hyper-
cube. The neurons at this stage are operating in
the linear region of their response functions. The
state of the system during the calculation, which
does not yet represent a valid tour, can be thought
of as superposition of several possible tours which
are being considered simultaneously.

Neurons with step function response lack this
linear region. Simulations have shown [9] that the
tour minimization ability of such neurons is far
inferior to that of continuocus valued neurons,
presumably because the ability to simultaneously
consider a number of tentative solutions is not
present in that case. The interior volume of the
calculational hypercube is forbidden, and the sys-
tem is restricted to jumping from one corner of
the hypercube to another.

In the TSP, pairs of neurons representing
close-together cities reinforce each other through
positive feed-back, i.e., a positive change in the
output of one neuron will elicit positive changes in
the outputs of those neurons with which it has
mutually reinforcing connections. These neurons
will in turn re-stimulate the initial neuron, so that,

after several cycles, the outputs will be pushed
into the f=1 plateau region of the sigmoid re-
sponse function. Pairs of neurons whose connec-
tions are predominantly inhibitive (4, ; large), will,
similarly, force each other to zero after several
cycles. It is in this way that the system evolves to
an attractor state of neurons with saturated output
values of 1 and 0.

Hopfield and Tank have shown that the neural
system obeys a set of coupled non-linear differen-
tial equations, which for the case of a homoge-
neous network, and in the absence of input cur-
rents from outside the network itself, can be writ-
ten as:

do, N
dar '21 Tijf(”j) U
=

T

where f is a sigmoid output function v, is the
input value of neuron i, T;; is the coupling strength
or coefficient between neurons i and J, and 7 is
the integration time constant of the array. The
equations tell us that the change in the input value
of a particular neuron in a small interval dr is
given by two terms, the first being the sum of the
output values of its neighbors multiplied by their
coefficients, and the second being simply a time
decay term.

It can be shown [9,14] that for such an array,
there exists an ‘energy’ function E given by

N
E=—3 Z T;‘jf(vi)f(vj)

ij=1
which, as long as 7,,=T, and T,=0, will be
continuously minimized as the system approaches
an attractor state. For the TSP, with 7,,=4 — d, o
it is clear that, for valid tours, E is minimized

when

valid trip
>, d,;=minimum
ij

i.e., when the total trip length is shortest. *

* Much of the mathematics used in describing neural net-
works is identical to that found in the treatment of a set of
problems called spin glasses [15], named for a type of
magnetic alloys containing both ferromagnetic and antifer-
romagnetic spin orderings.
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6. Philosophy of neural networks

A peculiarity of neural networks is that they do
not always pick the absolutely shortest tour, but
rather pick one of a set of nearly degenerate short
tours whose lengths vary only slightly from that of
the shortest tour. It is not yet understood whether
this is a fundamental limitation of the method or
whether it will ultimately be possible to ensure
perfect performance, but, as Hopfield and Tank
point out, bad solutions in their 30-city test net-
work were rejected over good ones by a factor of
10%. For many applications this kind of perfor-
mance is good deal more than adequate. On a trip
totalling many thousands of kilometers, dif-
ferences of a few kilometers are just not im-
portant. Similarly, a very fast track finding al-
gorithm which misses a few points or splits a track
occasionally is probably preferable over a very
slow one which is perfect. In experimental high
energy physics, perhaps more so than other fields,
fast, approximate solutions are at a premium,
whether it be for triggering purposes, on-line event
reconstruction, or to provide approximate starting
points to off-line reconstruction programs. At the
same time, of course, it is necessary to understand
possible biases which may be introduced by the
use of approximate solutions.

There are no known ‘fast’ algorithms for find-
ing optimal solutions to the TSP. Of the ap-
proximate methods (i.e., those giving near-optimal
solutions), model neural networks are not at pre-
sent the best or the fastest. Neural network meth-
ods are still of considerable interest however, for
the TSP as well for other problems, because of
their conceptual simplicity, wide range of applica-
bility, intrinsic parallelism, and promise of even-
tual hardwire implemention.

It is also possible to handle ‘intractable’ mini-
mization problems like the TSP using the for-
malism of simulated annealing [16]. In this method,
a cost function first is evaluated using some start-
ing values of the state variables of the system. The
state variables are then changed by small random
amounts, and the cost function reevaluated. A
Metropolis algorithm is used to decide whether to
accept this new configuration of the system, i.e., if
the new value of the cost function is smaller than

the previous omne, the new configuration is
accepted, but if the new value is larger than the
old by an amount AF, it is accepted only with
probability e 2#/7 where T is a control parame-
ter analogous to temperature. This method has
two advantages: 1) the cost function need not
necessarily be expressible as a sum of terms bilin-
ear in the state variables, as in the case of neural
networks, and 2) the system is less likely to be-
come trapped in local minima, since the Metropo-
lis function allows the system to escape from them
by permitting temporary increases in the cost
function. In typical applications, an ‘annealing
schedule’ is followed in which several minimisa-
tions are made, each time lowering the control
parameter 7. Simulated annealing has, however,
two important disadvantages from the point of
view of high energy physics. The first is that the
high quality global minima are computationally
extremely expensive: simulated annealing does not
offer the promise of speed that neural networks do
[17]. The second is that there is no apparent way
to implement simulated annealing in paraliel
hardware.

For problems with high combinatorial complex-
ity, vector computers are faster than serial com-
puters because they can calculate large numbers of
combinations simultaneously, continuing until all
combinations have been exhausted. Neural net-
works are even faster since they effectively employ
a directed search in which the solutions are
weighted by their quality. Bad solutions damp
themselves out very quickly through negative
feedback. The network effectively considers many
solutions simultaneously via the system of inter-
connections, continuously evolving toward config-
urations of lower energy.

The TSP is an example of a system for which
the model of the network, implemented on a vec-
tor machine, would be faster than an exhaustive
search. To demonstrate this we estimate the num-
ber of calculations necessary in the two cases.
Consider first a vector computer. An N city tour
has (N —1)! possible solutions. Each solution
involves the summing of N — 1 terms to calculate
the tour length. At the end of this, H(N — 1)!
comparisons must be made to find which combi-
nation gave the shortest tour. The total number of
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calculations is thus

)(Ngl)! L=t Nt

Nyp=(N-1 5 R

Now consider the neural network. There are N?
neurons. Each one is connected to 4(N — 1) others.
In each iteration, each connection must be multi-
plied by its coefficient, and the inputs of each
neuron must be summed. This implies 2 X 4(N —
1) operations per iteration. In addition, there will
be some 8 or so other operations per iteration
associated with the function calculation, etc. Thus,

Ny~ N2[8(N —1) + 8] Ny, = 80N>,

where we have assumed N,,, the number of itera-
tions, is about 10, a typical number of iterations
required for convergence. For a 30 city tour, we
find

32
NT,exhaustivesearch ~1x%x10 s

' 6
NT,neuralnet ~2x10°.

The neural net is 26 orders of magnitude faster,
ignoring possible effects due to differences in
average vector length in the two cases, in spite of
the fact that the coefficients have to be explicitly
multiplied and inputs explicitly summed on each
iteration [18].

7. Combinatorics in high multiplicity events

The energy function minimised by a neural
network can of course be any function expressible
as the sum of pairwise terms between the neurons.
We consider here a method of finding the set of n
tracks in an event of multiplicity N, supposed
large, which has the smallest value of some func-
tion F=2%7. f(p; p;) where f is any function of
the four-vectors p; and p;. Suppose, for example,
we wish to find the set of n tracks which have the
largest overall invariant mass M. First note that

2

= Z Zpipj

i=1j=1

n

ZP:‘

i=1

n n
= Z mzz + Zpipja
=1

i#j

M?=

where m, is the mass of the /th track. We assume
that the m, are all roughly equal and that thus
maximizing the second term above will maximize
M? (an alternate method would be to incorporate
the m, into externally applied bias currents to the
neurons).

We construct the N by n neural network shown
in fig. 5. The horizontal position of a neuron
indicates the track number, and the vertical posi-
tion indicates the order of that track in the group
of n tracks being considered. Valid solutions to
the problem have one neuron in each row and
column, as in the TSP. To this end, inhibitive
connections are made between each neuron and
the others in its row and column. The coefficients
between two neurons not in the same row or
column will be of the form T;; & p, p;. The system
thus will evolve toward the configuration in which
the value of M? for the n chosen tracks is largest.
Events for which this largest value is above some
threshold could be flagged for further study.

We can again compare the number of calcula-
tions needed to perform this task through an
exhaustive search to that required for a model
neural network. We assume that all the f(p;, p;)
have been calculated separately in advance. For
the exhaustive search, the total number of combi-
nations is N!/al{(N —n)! while the number of
sums to be performed for each combination is
n!/2W(n—2)\. The number of compares to be
made at the end is also N!/n!(N — n)!, so that the
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Fig. 5. Combinatoric function minimization network. Connec-

tions for neuron (4, 3), represented by O, are shown, other ‘on’

neurons are represented by X. Solid lines are reinforcing

coefficients, broken lines are inhibitive coefficients. Each neu-
ron is connected to every other neuron.
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Table 1

Comparison of approximate total numbers of calculations nec-
essary to find, among a set of N tracks, those n which have the
smallest value of a function F =X/, f(p;, p;), for an exhaus-
tive search and for a model neural network

N n N T.exhaustive search N, T,neuralnetwork
35 4 3.7x10° 3.9%10°
50 4 1.6x10° 8 x10°
50 10 47 %104 5 x10°
50 25 3.8x10% 3.1x107
64 6 1.2%10° 2.9x%10°

total number of calculations is

NI { n!

NT,exhaustivesearch = ?’l‘(N — n)' 2'(’1 — 2), -+ 1 .

For the neural network, the number of neurons is
Nn, the number of connections for each neuron
also Nn, and the number of calculations per itera-
tion thus roughly 2N2n2. For 10 iterations the
total number of calculations is thus

~20N?n2.

N, T .neural network

The totals for a few particular cases are presented
in table 1. For N = 35, n =4, the two methods are
roughly equivalent. For N =50, n=4 the model
neural net is better, but only by about a factor of
2. For N=64, n=6, an improvement of 10° is
predicted, and for N=150, n=25, an improve-
ment of 10° (although admittedly a resonance
with 25 tracks is not a very sensible thing to want
to look for). It is thus the exact nature of the
problem which will determine whether a model
neural net is faster than an exhaustive search;
nevertheless, a hardwired network (with all possi-
ble tracks precalculated so that the 7;; do not have
to be changed for each event) should always be
fast, for any N and », and could be used, for
instance, as part of an experimental trigger (see
also ref. [18]).

8. Track finding with a neural network
Most track finding programs use a considerable

amount of computing time in trying numerous
combinations of points, most of which are im-

mediately rejected, in an attempt to find track
segments which will then be used to build tracks.
Thus, track finding looks like a perfect candidate
for treatment on a neural network. For a comple-
mentary review of more conventional track find-
ing methods, see the recent article of Grote [19].
Consider a set of N space points measured in a
TPC. From these points we define a set of legal
segments, defined as segments joining two points
in the set with lengths less than some cutoff R,
where R_ has a value of several times the mean
distance between space points. Thus each point
can be thought of as interacting only with those
points within radius R, to form possible track
segments. Each legal segment will be represented
by a neuron, as in the array in fig. 6. The circle in
the figure represents the presence of the directed
segment 3 — 2. The solution to the problem will
consist of an array in which all legal segments
which belong to tracks are ‘on’. Each final track
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will consist of a non-bifurcating, unbroken chain
of segments, which can be read out by choosing an
arbitrary point on the chain and following the
sequence in both directions until the ends of the
track are reached. On a valid track, no point
should have more than one directed segment en-
tering or leaving it, and no point should appear
more than once. For this reason, inhibitive con-
nections are imposed, as in the previous examples,
between each neuron and those in its row and
column. The reinforcing coefficients will be set up
such that the joining together, end-to-end, of short
segments of similar direction will be favored, in
order to ensure a smooth track. For the neuron
3 — 2 in the figure, for instance, the reinforcing
coefficients will be imposed between itself and all
the neurons in row 2, i.e., neurons 2 = k for k=1,
N. This chaining together of segments with similar
direction is similar in some ways to the minimal
spanning tree approach to track finding [20].

To see if this approach might actually work, a
test network was set up on the VAX 11 /785 at
L.AL. Orsay. The reinforcing coefficients were
chosen to have the form
7o cos”f, ;

ij rz‘j

3

where 6, is the angle between segments i and J,
r;; is the length of the vector sum of segments i
and j, and n is a small integer. We shall call these
type I coefficients. The § dependence favors pairs
of neurons with similar slopes, while the r depen-
dence assures that the shorter neurons are favored.
With these coefficients, the lowest energy config-
urations will consist of chains of short segments
which follow smooth curves. We can liken the
track finding to threading a piece of flexible spring
wire through the eyes of a set of fixed needles: it is
the total stored energy in the wire that is being
minimised by the network. Clearly solutions in
which the wire bends sharply or doubles back on
itself will have higher stored energy.

The track recognition capability that we seek is
similar to some of the processes studied in early
vision research. One of the goals of this field is to
understand the mechanisms by which visual field
data in the retina are processed before being sent

to the brain. There, as in our case, the basic task is
to provide algorithms which can extract informa-
tion about objects in the three dimensional en-
vironment from sparsely sampled, often noisy, two
dimensional data fields. The use of computational
neural networks has been investigated for such
early vision problems as edge detection, surface
reconstruction [21], and velocity field estimation
[22].

The network was tried on a set of simulated
events with from 1 to 6 tracks. The sigmoid func-
tion used was a piecewise linear approximation as
shown in fig. 7, and the parameters used in these
tests were: n=>5, Ar=057 per time step, and
R, =4.5(r), where (r) is the mean distance be-
tween adjacent points on the same track. In order
to keep the computing time and memory require-
ments low, the number of points per track was
kept below 20. Some sample results are shown in
figs. 8a and b, which show 4 stages in the evolu-
tion of a 4 and a 5 track event, respectively. In fig.
8a the network has faultlessly reconstructed a 4
track event with two crossing points. Fig. 8b shows
a somewhat more typical result: confusion in re-
gions where tracks are very close together, leading
to incorrect or illegal (e.g., three neurons at same
point) solutions in these regions. In the last frame
of both figures, evolution has stopped, i.e., conver-
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Fig. 7. Piecewise linear sigmoid function used in track and
cluster finding simulations.
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gence of the system has occurred. Convergence
usually occurred in less than 10 iterations, i.e., less
than 5 time constants. It is believed that the
overall performance can be improved by a more
judicious choice of coefficients, as a rigorous opti-
mization has not been done.

In an attempt to improve the performance for
close together tracks, another type of coefficient,
which we shall call fype 2, was tried. These repre-
sent connections between neurons which do not
share an endpoint, but nevertheless are relatively
near to each other. The value of the type 2 coeffi-
cient between two neurons is proportional to the

1—x” of a fit to a circle through the four points
that determine the two neurons. No type 2 coeffi-
cient is assigned if the neurons in question are
more than a few R_ away from each other, or if
the radius of the fitted circle is less than several
times the length of the longer of the two neurons.
Because the radius of the fitted circle is de-
termined by the neurons themselves, only local
smoothness is imposed, there is no restriction on
the global functional form of the resulting path,
(although the requirement of a constant radius of
curvature is an option that could be of interest in
triggering, see section 9). The presence of type 2
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Fig. 8. (a) Track finding with a model neural network. Total network energy, iteration number, and total elapsed time, T, are given.

Measured space points are represented by crosses, neurons by segments joining points, with a circle at the neuron head indicating

direction. Only neurons with output values greater than 0.1 are drawn. In practice, most neurons are found to have values near either
0 or 1. This 4 track event is perfectly reconstructed.
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Fig. 8. (b) same notation as (a). At convergence (final frame), the reconstruction is not perfect. Examples of missing or illegal neurons
(a), and incorrect choice of neurons (b), (c) are observed.

connections, if they prove essential, increases the
total number of connections, but not dramatically,
since, like the type 1 connections, they are local.
With both type 1 and type 2 coefficients in use, it
was possible to bring two concentric arcs quite
close together (e.g., radii of 1.0 and 0.98) without
failure. Tests with both type 1 and type 2 coeffi-
cients on higher multiplicity events are currently
in progress.

The choice of coefficients seems to be rather
delicate, and a number of attempts were made
before arriving at forms which gave reasonable
results. There is much to be learned about how to
choose the form of the coefficients and the relative

normalizations of reinforcing and inhibitory coef-
ficients. The effect of the gain of the response
function, the time step per iteration, and the ini-
tial conditions on the evolution of the network
must also be better understood. There will surely
be some difficulties to be resolved in passing from
these simple tests to a full fledged track re-
construction program for a real high energy physics
experiments, but the results so far are promising.

An interesting feature of this method is that the
tracks do not need to come from the origin, nor
do they need to be helices. The network will find
and associate together groups of points that follow
any reasonably smooth curve at any location in
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the volume being examined. Thus it is ideal for
cases where the magnetic field is not uniform, and
for finding tracks from secondary vertices. Noise
points will in general be far from real tracks, and
segments including them would make unaccepta-
bly large angles with other segments in a track.
This in turn means that such a configuration is
unfavored ‘energetically’, with the (desirable) re-
sult that noise points will be simply ‘ignored’.

It would be interesting to determine if track
finding with a model neural network is fast. To do
this properly, a comparison should be made, using
realistic data, between a model neural program
and a ‘conventional’ program, both developed on
a vector computer, or other massively parallel
devices, such as the Connection Machine. This
will be an undertaking of some magnitude, but in
the meantime it is possible to make some rough
approximations.

First we make two simplifying assumptions.
The first is that the coordinates of the points are
binned, so that points can occur only at discrete
locations. In a hardwired network it is the granu-
larity of the network which would ensure this
characteristic. If a given point can have a maxi-
mum of m possible neighbors within R, and each
of these in turn m — 1 neighbors, there will then
be a set of only m(m — 1) possible different values
of coefficients for legal segments (for simplicity,
we consider here only type 1 coefficients), and this
set will be sufficient to describe the entire net-
work. Thus it will not be necessary to calculate
new coefficients for each event. The second as-
sumption is that, in the model, we can ignore
points that are not ‘on’, thus eliminating a large
number of essentially irrelevant calculations.

Let m now be the mean number of ‘on’ space
points that are within R_ of any given space point.
This number will of course depend strongly on the
density of measurements along each track and the
spatial density of tracks, but we interpret m here
to be the average over the data set chosen. This
means that for each of the N points, there are on
average m legal segments that can connect it to
another nearby point. This second point then will
have m — 1 possible new legal segments that can
contain it. Thus the total number of reinforcing
connections in the network is Nm(m — 1) (since

neurons that do not share an end point are not
connected to each other in the network). A similar
argument shows that there are roughly 2Nm in-
hibitory connections for a grand total (10 itera-
tions) of

NT,model network 101\’7(7}12 + m)

Suppose we choose ‘histogramming’ as the ‘con-
ventional’ method to which to compare the model
network. In one application of this procedure [23]
the quantity

. z
sm(}\)————/_z——_?
yx“+y +z

is histogrammed for all measured space points. A
peak finding program then is applied to the result-
ing histogram. Points that contribute to the same
peak in the sin(A) distribution will have come
from the same track. To calculate and histogram
sin(A) for N points should require of the order of
10N calculations. The number of calculations in
the peak finding is proportional to the number of
bins, which we presume to be much smaller than
the number of points, and thus negligible, al-
though as pointed out in ref. [20], in some cases
the peak finding can become prohibitively com-
plicated. Thus,

NT,histogramming -~ 1ON

This suggests that the histogram method will be
considerably faster than the model network, in
those cases where histogramming is feasible, since
m will typically be of the order of a few tens or so.
It must be remembered of course, that histogram-
ming will only work on helical tracks through the
origin, while the neural approach will work for
any kind of track. Clearly, a detailed simulation is
required to determine which method is better
overall for a given case.

9. A neural trigger

Hardware neural networks are capable of pro-
viding detailed reconstructed event information,
on tracks, calorimeter clusters, etc., on a time scale
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of microseconds, and thus are of interest from the
standpoint of triggering.

Darbo and Heck [24] have developed a contigu-
ity trigger for the Delphi TPC at CERN which is
similar in many ways to a neural network. Ioniza-
tion from a track in the TPC drifts to the wire
planes where it is collected. Avalanches at the
wires induce signals on the pad arrays behind the
wires. These signals give r and ¢ information,
from pad position and sharing, and § information,
from drift time. For each of 10 @ bins, the r, ¢
information is mapped onto a rectangular array of
nodes, called an Image Memory (IM), of dimen-
sions 144 bins in ¢ and 16 bins in ». Each node in
the IM can be connected to its nearest neighbors
by means of addressable latches. A particular pat-
tern of connections for a given node 1s called a
contiguity mask. The contiguity mask pictured at
the top of fig. 9 can be described as follows: each
‘on’ node is connected to its neighbors above and
below, and in addition, the right-hand neighbor of
each ‘on’ mode is also connected to its neighbors
above and below. Tracks are found by applying
the same contiguity mask to all ‘on’ nodes and

Configuity
Mask

4
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Fig. 9. Using the contiguity mask shown at the top, the trigger
finds the track on the right, which has a continuous path across
the IM, but does not find the track on the left. From ref. [24].

looking for a continuous electrical path across the
IM. Fig. 9 shows an IM which contains 2 tracks,
one of which (the one on the right) is found using
the mask chosen, and the other, not found. The
efficiency of this trigger can be studied as a func-
tion of the type of contiguity mask (fig. 10). This
trigger, because of its array of simple nodes and
high connectivity, resembles a neural network.

Consider now a ‘true’ neural approach to the
same problem. Let each IM node be connected to
each of its nearest, second-nearest, and third-
nearest neighbors for a total of 48 connections per
node (fig. 11). Following the treatment of the
previous section, but with N now being the num-
ber of possible points (i.e., the number of nodes)
and with m = 48 being the total number of possi-
ble neighbors, not ‘on’ neighbors, we find

Ny~ N(m?*+m)
~ 144 X 16 X (48° + 48)
Ny~ 5x10°

for the total number of connections. Based on the
circuit densities given in section 3, a trigger of this
design should fit quite handily on a single chip,
and be capable of finding tracks in an IM on a
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Fig. 10. Efficiency of Delphi TPC contiguity trigger as a
function of p, for 3 contiguity masks. From ref. {24].
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Fig. 11. IM with one node mapped onto its nearest, second

nearest, and third nearest neighbors. Each of the 48 arrows

constitutes a neuron. Each node has exactly the same pattern
of connections. Based on the IM definition of ref. [24].

time scale of microseconds. The exact implemen-
tation of the trigger needs to be specified before
the question of rejection power can be properly
addressed, but presumably rejection of noise events
can be based on lack of convergence of the net-
work, or convergence only to very shallow minima.
The neural net will be somewhat more tolerant of
chamber inefficiencies than the contiguity trigger,
since it considers a wider range of possible con-
nections. Also, the neural work network should be
sensitive to tracks of any momentum (i.e., curva-
ture), while a given contiguity mask does not (by
definition) efficiently find tracks whose momenta
lie outside the range for which the mask was
chosen. Thus, the track information is more de-
tailed, which opens the possibility of making more
sophisticated trigger decisions.

An alternative approach to the neural trigger
would be to load in type 1 and type 2 coefficients
which correspond to tracks of a specified constant
radius of curvature. The network would then only
converge, i.e., give a trigger, when a track with this
curvature is present. In this configuration, the
loading of the coefficients in the neural trigger is
analogous to the loading of a contiguity mask in
the contiguity trigger. If the tracks are all roughly
the same length, they will each contribute roughly
equally to the energy function, so that the energy
function could perhaps be used to determine the
number of tracks found.

16. Cluster finding with a neural network or cellu-
lar automata

Consider a homogeneous multicell calorimeter
in which A cells are above some threshold. We
wish to partition these N cells into subgroups of
contiguous cells, i.e., into clusters of energy. Form
an N by N array of neurons as in fig. 12. In each
column, reinforcing coefficients are set up be-
tween each neuron and those corresponding to its
nearest neighbors in the calorimeter. There are no
connections between neurons in different col-
umns, nor are there any inhibitory connections.

As starting values, each neuron on the diagonal
1s set to 1 and all others are set to 0. In each
column, the ‘on’ neuron will proceed to turn on
the neurons corresponding to its neighbors in the
calorimeter, which in turn start to turn on their
neighbors, etc. Finally, in each column, all neu-
rons that are in the same cluster as the neuron
that was initially on in that column will be turned
on. The number of clusters will be equal to the
number of different kinds of columns, and the
content of each cluster can be read off from any
of the identical rows associated with that cluster.

This method was used in a test on the L.AL.
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Fig. 12. Cluster finding with N2 neurons or cellular automata.

The reinforcing connections are the same for all columns and

are only shown in column 1. Starting values of 1 are put along

the diagonal. The hashed areas indicate cells that will be ‘on’ in

the resulting attractor. The clusters found are (1,3, 4, 8),
(2,5,6),(7,9).
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VAX. Four energy clusters, of from 2 to 10 cells
each, were found simultaneously in a 50 by 50 cell
calorimeter. With steps of 0.5 time constants per
iteration, convergence took 3 iterations (though
this will clearly depend on cluster size). The
sigmoid response function used was the same as in
the track finding test mentioned earlier.

The clustering can clearly also be done with
cellular automata. In one approach, the array of
automata is exactly the same as that of the neu-
rons, but instead of using a sigmoid response, we
use the transition rule that a neuron will turn itself
on in a particular iteration if at least one of its
calorimeter neighbors is on. This system will evolve
exactly as did the neurons.

These two methods will have roughly the same
speed since they are actually almost identical. * In
both cases there are N2 cells. Let m be the average
number of cells to which a given cell is connected.
There are thus roughly N?m total connections for
either of these two methods, and it is easily seen
that the numbers of calculations per connection is
roughly one for each case.

The number of iterations needed can be esti-
mated in the following way. We turn on one cell
at random. In the cycle that follows, its nearest
neighbors will turn on, in the next cycle, its next
nearest neighbors, and so on. The cells will begin
to turn on in concenftric ‘rings’ which expand
away from the chosen cell like ripples in a pond.
In each cycle the radius of the ring will increase
by roughly one cell, and the expansion continues
until the edge of the cluster is reached. (For sim-
plicity we have taken the case of an ‘average’ cell
located near the middle of the cluster.) The num-
ber of cycles required is thus proportional to the
characteristic linear dimension of the cluster. As-
suming a ‘globular’ cluster of N, cells, this will
give, Ny, ~ %\/]‘\77 . Clearly the largest cluster will

iter,7

be the determining one, so that,

1a72
Ny v2cens = N m\/Nmax >

where N, .. is the number of cells in the biggest
cluster.

A faster cellular automata approach involves
using N, multistate automata, with one automaton
per calorimeter cell (see fig. 13). Let each automa-
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Fig. 13. Cluster finding with N multivalued cellular automata.
Clusters are the same as in the example of fig. 12.

ton’s ‘state variable’ be equal to the energy con-
tained in that cell (we could equally well use the
cell number instead of the energy). The transition
rule this time will be that each automaton takes on
as the new value of its state variable the largest
state variable value of any of its ‘on’ neighbors.
The system will evolve to a configuration in which
all cells belonging to the same cluster will have
taken on a value equal to the energy of the highest
energy cell in that cluster. Assuming that no two
peak cells had exactly the same energy at the
beginning of the calculation, this classification will
be unique. This approach might well be called the
‘contagion’ approach: the identity of the unique
element in each cluster (the one with largest en-
ergy, e.g) is a ‘germ’ which i1s passed from one
automaton to the next until all in the cluster have
been ‘infected’. The disease cannot spread to other
clusters since elements in different clusters by
definition do not touch each other.

With this method, each of the N cells compares
its own value to those of its m neighbors, for
roughly Nm calculations per cycle. The number of
iterations will go as V‘?\_f— as before so that

max

—

NT,NceHs - %Nm\lleax .
For comparison we consider a more ‘tradi-
tional’, vector approach. We form 3, N by N
arrays, A, B and C, all initially set to zero. In
each row i of 4 we set to 1 the ith bit, as well as
the bits corresponding to the nearest ‘on’ neigh-
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bors of i. Each row i/ can now be thought of as a
vector A, which represents a ‘minicluster’ centered
on the cell /. We initialize by setting C, = 4, and
leave B all zeroes.

In each iteration, we form for each 7 a vector @,
by or-ing together B, and all vectors A4, where j is
the index of a non-zero element of C,. We then set
C,=B,® @, and finally B,= Q,, where & is the
exclusive or operator. Thus B, contains the sum
total of elements known at this stage to belong to
the same cluster as i, while C; contains just the
new elements of the cluster found in this iteration.
The process continues until the C, become zero,
indicating that all the elements of the clusters have
been found.

For an ‘average’ initial cell near the center of a
‘globular’ cluster, the number of new elements
found will increase roughly linearly each iteration,
in steps of m, the mean number of neighbors,
until the last iteration (again determined by the
largest cluster) where some 4\/7\7[;; new elemernts
will be found. The number of calculations re-
quired in each iteration is roughly m per new
element so that

N veetos ~ Nm[m+2m+3m+ - +4/N, ],
NT,vector -~ 8NN

max *

These calculations are rather crude but it appears
that, for typical numbers, the N-automata ap-
proach may be advantageous.

11. Associative memory in neural networks

11.1. Feedback network

An exciting aspect of neural networks is their
potential for information storage. Suppose we use
an array of pixels to represent an image, a face,
for instance. We first set up reinforcing coeffi-
cients between all the ‘on’ pixels, then extinguish
the array. Subsequently, if we turn on any set of
pixels that were previously on, the system will
evolve, because of the reinforcing coefficients, to
the state in which the image is on once again. The
image can be thought of as being ‘stored’, and can
be ‘recalled’ by specifying a subset of the ‘on’

pixels in the image. If we wish to store a second
image in this same network, in order to ensure
‘noiseless’ recall, it will be necessary to modify the
coefficients in the regions of overlap of the two
images, by including inhibitory coefficients, for
instance, so that the two images can not turn each
other on. Clearly, the subset of a given image that
must be specified in order to solicit its recall will
have to be larger now: in particular, it must con-
tain more than the set of points common to both
images, in order to uniquely specify the image
desired.

Similarly, as more and more images are added
to the ‘memory’, the coefficients of all images
stored thus far will have to be modified slightly in
order to keep the ‘recollections’ distinct. (Also, the
subsets of points needed for recall will have to be
more specific. This is equivalent to saying that the
set of points applied as input to the network must
be sufficient to place the system within the basin
of attraction of the target response.) This iterative
process of ‘learning’ in order to store memories
was first discussed in detail by Hebb [25]. The
coefficients are established by the iterative learn-
ing procedure: initial values are chosen at random,
and then the coefficients are adjusted slightly after
each image is presented, in such a way as to
decrease the difference between the response of
the network and the desired response. (This dif-
ference is often expressed as the Hamming dis-
tance, defined as the number of pixels which are
not identical in the desired and obtained re-
sponses.) After several iterations through the set
of images, the coefficients will be effectively opti-
mised for the set of images chosen. It has been
shown [14] that the ‘Hebbian’ coefficients for the
storage of p memories in an array of N neurons
can be expressed as

1 p
Tij = 'ﬁ Z} gzﬂg/'JL
p=

where &' (= £1) is the value of neuron 7/ in
memory configuration .

We have here, then, a means of recalling the
entirety of a stored pattern merely by specifying a
unique subset of that pattern. This type of infor-
mation storage is referred to as associative or
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content addressable memory. It is believed that
human (or animal) memory of, say, familiar faces
or objects, may operate along similar lines, e.g.,
being able to recognize a friend’s face even though
it is partially obscured. An optical device capable
of carrying out exactly this task is described in ref.
[12]. In another application, a model network was
used to identify fingerprints from fragmentary or
noisy versions of the prints [26].

Intuitively, it would seem that at some point
the network would become saturated, i.e., that the
number of coefficients would become insufficient
to uniquely specify all the memory configurations.
For coefficients as defined above, it has been
shown [14] that in fact perfect or nearly perfect
recall of memories is only possible if p < aN, with
a~0.1-0.2.

In high energy physics, the most common form
of data storage is the mass storage of thousands to
millions of events on magnetic tape or in large
disk files. The binary information contained in a
data event can, in principle at least, be represented
as a pattern of pixels. One can imagine, then, a
scenario in which a subset of an event, for exam-
ple “a stiff track, an electromagnetic cluster, and
40 GeV missing energy”, is specified, in pixel
form, to a neural network. The network, if such an
event exists, then displays the event.

In practice, there are a number of problems
that will have to be addressed before associative
memory becomes of use, in this form, at least, in
high energy physics. One problem has to do with
the relationship between p and N. To store a data
sample of 1 million events, say, requires (a = 0.1)
10 million neurons. The degree of connectivity
required can not be a priori specified, but in the
limiting case of a fully connected network, 10
connections are required, which seems extremely
high. Secondly, each event, in this scenario, should
apparently be represented by 10 million bits of
information, which in most high energy physics
applications would be quite a bit more than re-
quired or desired. Finally, in high energy physics,
it is usually a subset of events whose characteris-
tics fall within certain limits that is desired, rather
than a particular event that exactly fulfills a given
set of criteria. Thus, in order that associative
memory be useful in high energy physics, it will be

necessary to a) arrive at a more appropriate rela-
tionship between the number of events, the sizes
of the events, and the number of neurons, and b),
to find a way to express the ‘answer’ as a set of
events rather than a single event.

A number of methods have been put forward
which address the first of these requirements, al-
though it is not yet apparent how they might be
implemented. One approach [27] is the generaliza-
tion of the energy function to include trilinear or
higher terms. This does in fact have the effect of
increasing the storage capacity of the network, but
the considerable increase in computational com-
plexity makes this technique unattractive. Other
approaches center upon the use of different types
of learning rules. In one implementation, the net-
work is able to continuously store incoming images
by ‘forgetting’ the earlier images, the storage
capacity at any given time being constant [28].
The use of non-local learning rules can also en-
hance storage capacity. The ‘Hebbian® rule is a
local one: the coefficient between two neurons
depends only upon the values of those two neu-
rons in the patterns stored. By allowing non-local
terms in the learning rule, values up to a« =2 have
been achieved [29]. For random patterns, this rep-
resents the maximum storage capacity, but it has
been shown that arbitrarily large numbers of cor-
related patterns can be stored, even though the
total amount of information stored remains limited
[30]. Non-local learning rules are frowned upon by
some since they are improbable for biological
systems, which are after all the model upon which
neural networks are supposed to be based, but
they may nonetheless prove to be useful. Another
interesting approach to increasing storage capacity
of neural networks is the use of sparsification
techniques [31]. If z patterns of x bits are to be
stored, a network of n= 2x/)-c; neurons is suffi-
cient providing that the patterns can be encoded
into n 0-1 strings of sparsity ~ vVx.

11.2. Filter network

An associative memory can also be constructed
using linear networks without feedback. The cir-
cuit will then be simply fig. 3 with the amplifiers
and feedback loops removed. On the input line i
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we apply the value, ¥, of pixel / in the input
image, which we wish to compare to a set of p
reference images. We have arranged that the resis-
tance j in column / by equal to the reciprocal of
/. the value of pixel / in image j. With this
prescription, the output currents in row j are
given by L7_,V;&/. The output lines thus provide a
list of the ‘dot products’ of the input image with
each of the stored reference images. Additional
circuitry can then be used to pick the image which
best matches the input (i.e., has the largest dot
product). A hardware implementation along these
lines is described in ref. [32]. In high energy
physics, this method might prove useful in ‘tem-
plate matching’ applications, such as the track
finding method of refs. [3,4] mentioned earlier,
and is worthy of further exploration.

12. Conclusion

Pattern recognition has always been an im-
portant part of high energy physics data analysis.
But, as one authors has put it [1], “This observa-
tional, pattern recognizing task... is an activity
better matched to the capability of a brain than to
that of a computer. We have applied the brute
force numerical capability of computers to very
non-numerical problems.” We have seen, though,
that these types of problems adapt themselves
quite naturally to treatment with neural networks
or cellular automata, which at the same time are
an extension of the trend toward less intelligent
but more highly connected processors in high en-
ergy physics that we have remarked upon earlier.

Encouraging progress has been made in the
study of highly complex phenomena such as fluid
flow through the use of cellular automata. In high
physics, some of the most complex problems, as
we have seen, can also benefit from the use of
model neural networks. It has been shown that
track finding can be implemented in a connective
network approach in which segments between
measured space points are represented by neurons.
When a simple conventional approach, such as
histogramming, is feasible, model networks, due
to the high computational overhead that modell-
ing entails, may not offer gains in speed, though

more rigorous tests will be necessary to be certain
of this. The high speed of existing hardwired
networks suggests the investigation of scaled-down,
coarse-grained networks that could rapidly calcu-
late detailed tracking or calorimeter quantities for
use in triggering. It is appropriate that these inves-
tigations, in addition to further studies of model
networks, (using, e.g., a Connection Machine) be
undertaken in the field of experimental high en-
ergy physics, traditionally a leader in the develop-
ment and application of state-of-the-art technol-
ogy and computing techniques.

Acknowledgements

The author wishes to acknowledge the comput-
ing and programming support of the Service Infor-
matique at L.A.L. This work was supported by
funds from the Centre National de la Recherche
Scientifique of France.

References

[1} L. Gaines and T. Nash, Use of New Computer Technolo-
gies in Elementary Particle Physics, FERMILAB-Pub-
87/38, Fermilab, 1987,

[2] D. Gosman et al., in: Proc. Topical Conf. on the Applica-
tion of Microprocessors to HEP Experiments, CERN
81-07, eds. A. Michelini et al., CERN (1981) pp. 70-82,
83-90.

[31 C. Georgiopoulos et al., A Vectorized Track Finding and
Fitting Algorithm in Experimental HEP using a CYBER-
205, FSU-SCRI-87-08, Florida State University, 1987.

[4] J.J. Becker et al., Nucl. Instr. and Meth. A235 (1985) 502.

[5] D. Levinthal, H. Goldman, C. Georgiopoulos, J.L. De-
Keyser, S. Linn, S. Youssef and M.F. Hodous, Comput.
Phys. Commun. 45 (1987) 137.

[6] See, e.g., A.K. Dewdney, Scientific American (May 1985)
pp. 10-16.

[7] S. Wolfram, Theory and Applications of Cellular Au-
tomata (World Scientific, Singapore, 1986); Scientific
American (Sept. 1984) p. 140.

[8] T. Vicsek and A. Szalay, Phys. Rev. Lett. 58 (1987) 2818.

[9] J.J. Hopfield and D.W. Tank, Science 233 (1986) 625.

J.J. Hopfield and D.W. Tank, Biological Cybernetics 52
(1985) 141. )
[10] L.D. Jackel et al., Electronic Neural Computing, AT&T
Bell Labs, Holmdel, NJ 07733, presented at les Houches,
April 1986.
[11] T.J. Sejnowski and C.R. Rosenberg, NETtalk: A Parallel
Network that Learns to Read Aloud, Technical Report



448 B. Denby / Neural networks and cellular automata

JHU /EECS-86 /01, Johns Hopkins University, Baltimore,
1986.

[12] Y. Mostafa and D. Psaltis, Scientific American (March
1987).

[13] W. Hillis, The Connection Machine (MIT Press, Cam-
bridge, MA, 1985).

[14] W.A. Litde, Math. Biosci. 18 (1974) 101.

J.J. Hopfield, Proc. Nat’'l. Acad. Sci. USA 79 (1982) 2554.

[15] Reviewed in: Castellani, Di Castro and Peliti, eds., Dis-
ordered Systems and Localization (Springer, New York,
1981). '

[16] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Science 220
(1983) 671.

[17} See, e.g., R.D. Williams, Optimization by a Computa-
tional Neural Net, Caltech note C> P-371, CALT-68-1409,
20 November 1986.

[18] There are some indications that neural network perfor-
mance does not necessarily remain constant as the net-
work size grows. See for example G.V. Wilson and G.S.
Pawley, On the Stability of Travelling Salesman Problem
Algorithm of Hopfield and Tank, Univ. of Edinburgh
preprint, Department of Physics, 1987, submitted to Biol.
Cybernetics.

[19] H. Grote, Rep. Prog. Phys. 50 (1987) 473.

[20] Ibid., ref. [19] and D. Cassell and H. Kowalski, Nucl.
Instr. and Meth. 185 (1981) 235.

[21] C. Koch, J. Marroquin and A. Yuille, Proc. Nat’'l. Acad.
Sci. U.S.A. 83 (1986) 4263.

[22] J. Tanner, Ph.D. thesis, Caltech (1986).

[23] N.J. Hadley, Charged Hadron Production in e*e™ Colli-
sions at PEP with the TPC, Ph.D. thesis, U.C. Berkeley,
1983, LBL-16116.

CERN Delphi Collaboration Data Analysis Group, Re-

port on Local Pattern Recognition Methods for the Indi-
vidual Detectors in Delphi, Delphi 86-56 (May 1986).

[24] G. Darbo and B. Heck, The TPC Trigger for the Delphi
Experiment, CERN /EF 86-22, 1986.

[25] D.O. Hebb, The Organization of Behaviour (Wiley, New
York, 1949).

[26] E. Mjolsness, Neural Networks, Pattern Recognition, and
Fingerprint Hallucination, Ph.D. Thesis, California In-
stitute of Technology, Pasadena, CA, 1985.

[27] L.F. Abott and Yair Arian, Storage Capacity of Gener-
alized Networks, Boston University preprint BUHEP-87-6.
E. Gardner, Multiconnected Neural Network Models,
University of Edinburgh preprint 86 /375.

[28] J.P. Nadal, G. Toulouse, J.P. Changeux and S. Dehaene,
Europhys. Lett. 1 (1986) 535.

[29] L. Personnaz, 1. Guyon, G. Dreyfus, J. de Phys. Lett. 16
(1986) 1.359,

I. Kanter and H. Sompolinsky, Phys. Rev. A 35 (1987)
380,

E. Gardner and B. Derrida, Optimal Storage Properties of
Neural Network Models, University of Edinburgh pre-
print 87 /397,

T.M. Cover, IEEE Transactions EC 14-3 (1986) 326,

S. Venkatesh (1986), in: Proc. of the Conf. on Neural
Networks for Computing (Snowbird Utah), also Ph.D.
Thesis, California Institute of Technology (1986).

[30] E. Gardner, Maximum Storage Capacity in Neural Net-
works, University of Edinburgh preprint 87 /395,

[31] Technical Comment of Gunter Palm in Science 235 (1987)
1227.

[32] H.P. Graf and P. de Vegvar, Proc. Conf. Advan. Research
VLSI, Stanford, ed. P. Losleban (MIT Press, Cambridge,
MA, 1987) pp. 351-367.



